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Statistical Significance of
the Netflix Challenge
Andrey Feuerverger, Yu He and Shashi Khatri

Abstract. Inspired by the legacy of the Netflix contest, we provide an
overview of what has been learned—from our own efforts, and those of
others—concerning the problems of collaborative filtering and recommender
systems. The data set consists of about 100 million movie ratings (from 1 to
5 stars) involving some 480 thousand users and some 18 thousand movies;
the associated ratings matrix is about 99% sparse. The goal is to predict rat-
ings that users will give to movies; systems which can do this accurately have
significant commercial applications, particularly on the world wide web. We
discuss, in some detail, approaches to “baseline” modeling, singular value
decomposition (SVD), as well as kNN (nearest neighbor) and neural net-
work models; temporal effects, cross-validation issues, ensemble methods
and other considerations are discussed as well. We compare existing models
in a search for new models, and also discuss the mission-critical issues of
penalization and parameter shrinkage which arise when the dimensions of
a parameter space reaches into the millions. Although much work on such
problems has been carried out by the computer science and machine learn-
ing communities, our goal here is to address a statistical audience, and to
provide a primarily statistical treatment of the lessons that have been learned
from this remarkable set of data.

Key words and phrases: Collaborative filtering, cross-validation, effective
number of degrees of freedom, empirical Bayes, ensemble methods, gradient
descent, latent factors, nearest neighbors, Netflix contest, neural networks,
penalization, prediction error, recommender systems, restricted Boltzmann
machines, shrinkage, singular value decomposition.

1. INTRODUCTION AND SUMMARY

In what turned out to be an invaluable contribution
to the research community, Netflix Inc. of Los Gatos,
California, on October 2, 2006, publicly released a re-
markable set of data, and offered a Grand Prize of one
million US dollars to the person or team who could
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succeed in modeling this data to within a certain pre-
cisely defined predictive specification. While this con-
test attracted attention from many quarters—and most
notably from within the computer science and artifi-
cial intelligence communities—the heart of this con-
test was a problem of statistical modeling, in a context
known as collaborative filtering. Our goal in this pa-
per is to provide a discussion and overview—from a
primarily statistical viewpoint—of some of the lessons
for statistics which emerged from this contest and its
data set. This vantage will also allow us to search for
alternative approaches for analyzing such data (while
noting some open problems), as well as to attempt to
understand the commonalities and interplay among the
various methods that key contestants have proposed.

Netflix, the world’s largest internet-based movie
rental company, maintains a data base of ratings their
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users have assigned (from 1 “star” to 5 “stars”) to
movies they have seen. The intended use of this data is
toward producing a system for recommending movies
to users based on predicting how much someone is go-
ing to like or dislike any particular movie. Such pre-
dictions can be carried out using information on how
much a user liked or disliked other movies they have
rated, together with information on how much other
users liked or disliked those same, as well as other,
movies. Such recommender systems, when sufficiently
accurate, have considerable commercial value, partic-
ularly in the context of the world wide web.

The precise specifications of the Netflix data are a
bit involved, and we postpone our description of it to
Section 2. Briefly, however, the training data consists
of some 100 million ratings made by approximately
480,000 users, and involving some 18,000 movies.
(The corresponding “matrix” of user-by-movie ratings
is thus almost 99% sparse.) A subset of about 1.5 mil-
lion ratings of the training set, called the probe subset,
was identified. A further data set, called the qualifying
data was also supplied; it was divided into two approx-
imately equal halves, called the quiz and test subsets,
each consisting of about 1.5 million cases, but with the
ratings withheld. The probe, quiz and test sets were
constructed to have similar statistical properties.1

The Netflix contest was based on a root mean
squared error (RMSE) criterion applied to the three
million predictions required for the qualifying data. If
one naively uses the overall average rating for each
movie on the training data (with the probe subset re-
moved) to make the predictions, then the RMSE at-
tained is either 1.0104, 1.0528 or 1.0540, respectively,
depending on whether it is evaluated in sample (i.e.,
on the training set), on the probe set or on the quiz set.
Netflix’s own recommender system, called Cinematch,
which is known to be based on computer-intensive but
“straightforward linear statistical models with a lot of
data conditioning” is known to attain (after fitting on
the training data) an RMSE of either 0.9514 or 0.9525,
on the quiz and test sets, respectively. (See Bennett
and Lanning, 2007.) These values represent, approx-
imately, a 9 1

2 % improvement over the naive movie-
average predictor. The contest’s Grand Prize of one
million US dollars was offered to anyone who could
first2 improve the predictions so as to attain an RMSE

1Readers unfamiliar with the Netflix contest may find it helpful to
consult the more detailed description of the data given in Section 2.

2Strictly, our use of “first” here is slightly inaccurate owing to a
Last Call rule of the competition.

value of not more than 90% of 0.9525, namely, 0.8572,
or better, on the test set.

The Netflix contest began on Oct 2, 2006, and was
to run until at least Oct 2, 2011, or until the Grand
Prize was awarded. More than 50,000 contestants inter-
nationally participated in this contest. Yearly Progress
Prizes of $50,000 US were offered for the best im-
provement of at least 1% over the previous year’s re-
sult. The Progress Prizes for 2007 and 2008 were won,
respectively, by teams named “BellKor” and “BellKor
in BigChaos.” Finally, on July 26, 2009, the Grand
Prize winning entry was submitted by the “BellKor’s
Pragmatic Chaos” team, attaining RMSE values of
0.8554 and 0.8567 on the quiz and test sets, respec-
tively, with the latter value representing a 10.06% im-
provement over the contest’s baseline. Twenty minutes
after that submission (and in accordance with the Last
Call rules of the contest) a competing submission was
made by “The Ensemble”—an amalgamation of many
teams—who attained an RMSE value of 0.8553 on the
quiz set, and an RMSE value of 0.8567 on the test set.
To two additional decimal places, the RMSE values at-
tained on the test set were 0.856704 by the winners,
and 0.856714 by the runners up. Since the contest rules
were based on test set RMSE, and also were limited to
four decimal places, these two submissions were in fact
a tie. It is therefore the order in which these submis-
sions were received that determined the winner; fol-
lowing the rules, the prize went to the earlier submis-
sion. Fearing legal consequences, a second and related
contest which Netflix had planned to hold was canceled
when it was pointed out by a probabilistic argument
(see Narayanan and Shmatikov, 2008) that, in spite of
the precautions taken to preserve anonymity, it might
theoretically be possible to identify some users on the
basis of the seemingly limited information in the data.

Of course, nonrepeatability, and other vagaries of
ratings by humans, itself imposes some lower bound
on the accuracy that can be expected from any recom-
mender system, regardless of how ingenious it may be.
It now appears that the 10% improvement Netflix re-
quired to win the contest is close to the best that can
be attained for this data. It seems fair to say that Net-
flix technical staff possessed “fortuitous insight” in set-
ting the contest bar precisely where it did (i.e., 0.8572
RMSE); they also were well aware that this goal, even
if attainable, would not be easy to achieve.

The Netflix contest has come and gone; in this story,
significant contributions were made by Yehuda Ko-
ren and by “BellKor” (R. Bell, Y. Koren, C. Volin-
sky), “BigChaos” (M. Jahrer, A. Toscher), larger teams
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called “The Ensemble” and “Grand Prize,” “Grav-
ity” (G. Takacs, I. Pilaszy, B. Nemeth, D. Tikk),
“ML@UToronto” (G. Hinton, A. Mnih, R. Salakhutdi-
nov; “ML” stands for “machine learning”), lone contes-
tant Arkadiusz Paterek, “Pragmatic Theory” (M. Chab-
bert, M. Piotte) and many others. Noteworthy of the
contest was the craftiness of some participants, and
the open collaboration of others. Among such stories,
one that stands out is that of Brandyn Webb, a “cy-
bernetic epistemologist” having the alias Simon Funk
(see Piatetsky, 2007). He was the first to publicly re-
veal use of the SVD model together with a simple al-
gorithm for its implementation that allowed him to at-
tain a good early score in the contest (0.8914 on the
quiz set). He also maintains an engaging website at
http://sifter.org/~simon/journal.

Although inspired by it, our emphasis in this paper
is not on the contest itself, but on the fundamentally
different individual techniques which contribute to ef-
fective collaborative filtering systems and, in particu-
lar, on the statistical ideas which underpin them. Thus,
in Section 2, we first provide a careful description of
the Netflix data, as well as a number of graphical dis-
plays. In Section 3 we establish the notation we will
use consistently throughout, and also include a table
summarizing the performance of many of the methods
discussed. Sections 4, 5, 6 and 7 then focus on four key
“stand-alone” techniques applicable to the Netflix data.
Specifically, in Section 4 we discuss ANOVA tech-
niques which provide a baseline for most other meth-
ods. In Section 5 we discuss the singular value decom-
position or SVD (also known as the latent factor model,
or matrix factorization) which is arguably the most
effective single procedure for collaborative filtering.
A fundamentally different paradigm is based on neural
networks—in particular, the restricted Boltzman ma-
chines (RBM)—which we describe in Section 6. Last
of these stand-alone methods are the nearest neighbor
or kNN methods which are the subject of Section 7.

Most of the methods that have been devised for col-
laborative filtering involve parameterizations of very
high dimension. Furthermore, many of the models are
based on subtle and substantive contextual insight. This
leads us, in Section 8, to undertake a discussion of the
issues involved in dimension reduction, specifically pe-
nalization and parameter shrinkage. In Section 9 we
digress briefly to describe certain temporal issues that
arise, but we return to our main discussion in Sec-
tion 10 where, after exploring their comparative prop-
erties, and taking stock of the lessons learned from the
ANOVA, SVD, RBM and kNN models, we speculate

on the requisite characteristics of effective models as
we search for new model classes.

In response to the Netflix challenge, subtle, new and
imaginative models were proposed by many contest
participants. A selection of those ideas is summarized
in Section 11. At the end, however, winning the ac-
tual contest proved not to be possible without the use
of many hybrid models, and without combining the re-
sults from many prediction methods. This ensemble as-
pect of combining many procedures is discussed briefly
in Section 11. Significant computational issues are in-
volved in a data set of this magnitude; some numeri-
cal issues are described briefly in Section 13. Finally,
in Section 14, we summarize some of the statistical
lessons learned, and briefly note a few open problems.
In large part because of the Netflix contest, the re-
search literature on such problems is now sufficiently
extensive that a complete listing is not feasible; how-
ever, we do include a broadly representative bibliogra-
phy. For earlier background and reviews, see, for exam-
ple, ACM SIGKDD (2007), Adomavicius and Tuzhilin
(2005), Bell et al. (2009), Hill et al. (1995), Hoffman
(2001b), Marlin (2004), Netflix (2006/2010), Park and
Pennock (2007), Pu et al. (2008), Resnick and Varian
(1997) and Tuzhilin at al. (2008).

2. THE NETFLIX DATA

In this section we provide a more detailed overview
of the Netflix data; these in fact consist of two key com-
ponents, namely, a training set and a qualifying set.
The qualifying data set itself consists of two halves,
called the quiz set and the test set; furthermore, a par-
ticular subset of the training set, called the probe set,
was identified. The quiz, test and probe subsets were
produced by a random three way split of a certain col-
lection of data, and so were intended to have identical
statistical properties.

The main component of the Netflix data—namely,
the “training” set—can be thought of as a matrix of rat-
ings consisting of 480,189 rows, corresponding to ran-
domly selected anonymous users from Netflix’s cus-
tomer base, and 17,770 columns, corresponding to
movie titles. This matrix is 98.8% sparse; out of a pos-
sible 480,189 × 17,770 = 8,532,958,530 entries, only
100,480,507 ratings are actually available. Each such
rating is an integer value (a number of “stars”) between
1 (worst) and 5 (best). The data were collected be-
tween October 1998 and December 2005, and reflect
the distribution of all ratings received by Netflix dur-
ing that period. It is known that Netflix’s own database

http://sifter.org/~simon/journal
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consisted of over 1.9 billion ratings, on over 85,000
movies, from over 11.7 million subscribers; see Ben-
nett and Lanning (2007).

In addition to the training set, a qualifying data set
consisting of 2,817,131 user–movie pairs was also pro-
vided, but with the ratings withheld. It consists of two
halves: a quiz set, consisting of 1,408,342 user–movie
pairs, and a test set, consisting of 1,408,789 pairs; these
subsets were not identified. Contestants were required
to submit predicted ratings for the entire qualifying set.
To provide feedback to all participants, each time a
contestant submitted a set of predictions Netflix made
public the RMSE value they attained on a web-based
Leaderboard, but only for the quiz subset. Prizes, how-
ever, were to be awarded on the basis of RMSE values
attained on the test subset. The purpose of this was to
prevent contestants from tuning their algorithms on the
“answer oracle.”

Netflix also provided the dates on which each of the
ratings in the data sets were made. The reason for this is
that Netflix is more interested in predicting future rat-
ings than in explaining those of the past. Consequently,
the qualifying data set had been selected from among
the most recent ratings that were made. However, to
allow contestants to understand the sampling charac-
teristics of the qualifying data set, Netflix identified
the probe subset of 1,408,395 user-movie pairs within
the training set (and hence with known ratings), whose
distributional properties were meant to match those of
the qualifying data set. (The quiz, test and probe sub-
sets were produced from the random three-way split
already mentioned.) As a final point, prior to releas-
ing their data, Netflix applied some statistically neu-
tral perturbations (such as deletions, changes of dates
and/or ratings) to try to protect the confidentiality and
proprietary nature of its client base.

In our discussions, the term “training set” will gen-
erally refer to the training data, but with the probe sub-
set removed; this terminology is in line with common
usage when a subset is held out during a statistical fit-
ting process. Of course, for producing predictions to
submit to Netflix, contestants would normally retrain
their algorithms on the full training set (i.e., with probe
subset included). As the subject of our paper is more
concerned with collaborative filtering generally, rather
than with the actual contest, we will make only lim-
ited reference to the qualifying data set, and mainly in
our discussion on implicit data in Section 11, or when
indicating certain scores that contestants achieved.

Finally, we mention that Netflix also provided the ti-
tles, as well as the release years, for all of the movies.

FIG. 1. Frequency histograms for ratings in the training set
(white) and probe set (black).

In producing predictions for its internal use, Netflix’s
Cinematch algorithm does make use of other data
sources, such as (presumably) geographical, or other
information about its customers, and this allows it to
achieve substantial improvements in RMSE. However,
it is known that Cinematch does not use names of the
movies, or dates of ratings. In any case, to produce the
RMSE values on which the contest was to be based,
Cinematch was trained without any such other data.
Nevertheless, no restrictions were placed on contes-
tants from using external sources, as, for instance, other
databases pertaining to movies. Interestingly however,
none of the top contestants made use of any such aux-
iliary information.3

Figures 1 through 6 provide some visualizations of
the data. Figure 1 gives histograms for the ratings in the
training set, and in the probe set. Reflecting temporal
effects to be discussed in Section 9 (but see also Fig-
ure 5), the overall mean rating, 3.6736, of the probe set
is significantly higher than the overall mean, 3.6033,
of the training set. Figures 2 and 3 are plots (in lieu of
histograms) of the cumulative number of ratings in the
training, probe and qualifying sets. Figure 2 is cumula-
tive by movies (horizontal axis, and sorted from most
to least rated in the training set), while Figure 3 is cu-
mulative by users. The steep rise in Figure 2 indicates,
for instance, that the 100 and 1000 most rated movies

3This is not to say they did not try. But perhaps surprisingly—
with the possible exception of a more specific release date—such
auxiliary data did not improve RMSE. One possible explanation
for this is that the Netflix data set is large enough to proxy such
auxiliary information internally.
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FIG. 2. Cumulative proportion of ratings, by movies, for the
training, probe and qualifying sets. Movies are on the horizontal
axis, sorted from most to least rated.

account for over 14.3% and 62.5% of the ratings, re-
spectively. In fact, the most rated4 movie (Miss Conge-
niality) was rated by almost half the users in the train-
ing set, while the least rated was rated only 3 times.
Figure 2 also evidences a slight—although statistically
significant—difference in the profiles for the training
and the qualifying (and probe) data. In Figure 3, the

FIG. 3. Cumulative proportion of ratings, by users, for the train-
ing, probe and qualifying sets. Users are on the horizontal axis,
sorted by number of movies rated (from most to least).

4We remark here that rented movies can be rated without having
been watched.

FIG. 4. Histograms for mean movie ratings (bars) and mean user
ratings (line with points) in the training set.

considerable mismatch between the curve for the train-
ing data, with the curves for the probe and qualify-
ing sets which match closely, reflects the fact that the
representation of user viewership in the training set is
markedly different from that of the cases for which pre-
dictions are required; clearly, Netflix constructed the
qualifying data to have a much more uniform distribu-
tion of user viewership.

Figure 4 provides histograms for the movie mean rat-
ings and the user mean ratings. The reason for the ev-
ident mismatch between these two histograms is that
the best rated movies were watched by disproportion-
ately large numbers of users. Finally, Figure 5 exempli-

FIG. 5. Temporal effects: Histograms for the dates (quarterly) of
ratings in the training set (white bars) and qualifying set (inlaid
black bars). The line with points shows quarterly mean ratings for
the training data (scale on right).
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FIG. 6. Mean movie ratings versus (logarithm of) number of rat-
ings (for a random subset of movies).

fies some noteworthy temporal effects in the data. His-
tograms are shown for the number of ratings, quarterly,
in the training and in the qualifying data sets, with the
dates in the qualifying set being much later than the
dates in the training set. Figure 5 also shows a graph
of the quarterly mean ratings for the training data (with
the scale being at the right). Clearly, a significant rise in
mean rating occurred starting around the beginning of
2004. Whether this occurred due to changes in the rat-
ings definitions, to the introduction of a recommender
system, to a change in customer profile, or due to some
other reason, is not known.

Finally, Figure 6 plots the mean movie ratings
against the (log) number of ratings. (Only a random
sample of movies is used so as not to clutter the plot.)
The more rated movies do tend to have the higher mean
ratings but with some notable exceptions, particularly
among the less rated movies which can sometimes have
very high mean ratings.

As a general comment, the layout of the Netflix data
contains enormous variation. While the average num-
ber of ratings per user is 209, and the average number
of ratings per movie is 5654.5 (over the entire training
set), five users rated over 10,000 movies each, while
many rated fewer than 5 movies. Likewise, while some
movies were rated tens of thousands of times, most
were rated fewer than 1000 times, and many less than
200 times. The extent of this variation implies large dif-
ferences in the accuracies with which user and movie
parameters can be estimated, a problem which is par-
ticularly severe for the users. Such extreme variation

is among the features of typical collaborative filtering
data which complicate their analyses.

3. NOTATION AND A SUMMARY TABLE

In this section we establish the notation we will ad-
here to in our discussions throughout this paper. We
also include a table, which will be referred to in the
sequel, of RMSE performance for many of the fitting
methods we will discuss.

Turning to notation, we will let i = 1,2, . . . , I range
over the users (or their indices) and j = 1,2, . . . , J

range over the movies (or their indices). For the Net-
flix training data, I = 480,189 and J = 17,770. Next,
we will let J (i) be the set of movies rated by user
i and I (j) be the set of users who rated movie j .
The cardinalities of these sets will be denoted vari-
ously as Ji ≡ |J (i)| and Ij ≡ |I (j)|. We shall also use
the notation C for the set of all user-movie pairs (i, j)

whose ratings are given. Denoting the total number of
user-movie ratings in the training set by N , note that
N = |C| = ∑I

i=1 Ji = ∑J
j=1 Ij . The ratings are made

on an ordered scale (such scales are known as “Lik-
ert scales”) and are coded as integers having values
k = 1,2, . . . ,K ; for Netflix, K = 5. The actual ratings
themselves, for (i, j) ∈ C , will be denoted by ri,j . Av-
erages of ri,j over i ∈ I (j), over j ∈ J (i), or over C
(i.e., over movies, or users, or over the entire training
data set) will be denoted by r·,j , ri,· and r·,· respec-
tively. Estimated values are denoted by “hats” as in r̂i,j ,
which may refer to the fitted value from a model when
(i, j) ∈ C , or to a predicted value otherwise. Many of
the procedures we discuss are typically fitted to the
residuals from a baseline fit such as an ANOVA; where
this causes no confusion, we continue using the nota-
tions ri,j and r̂i,j in referring to such residuals. Some
procedures, however, involve both the original ratings
as well as their residuals from other fits; in such cases,
the residuals are denoted as ei,j and êi,j . Finally, the
notation I (j, j ′) will refer to the set of all users who
saw both movies j and j ′, and J (i, i ′) will refer to the
set of movies that were seen by both users i and i′.

Finally, we also include, in this section, a table which
provides a summary, compiled from multiple sources,
of the RMSE values attained by many of the methods
discussed in this paper. The RMSE values shown in
Table 1 are typically for the probe set, after fitting on
the remainder of the training set; or where known, on
the quiz set, after fitting on the entire training set; but
exceptions to this are noted. References to the “Leader-
board” refer to performance on the quiz set publicly re-
leased by Neflix. We refer to Table 1 in our subsequent
discussions.
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TABLE 1
RMSE values attained by various methods

Predictive model RMSE Remarks and references

r̂i,j = μ 1.1296 RMSE on probe set, using mean of training set
r̂i,j = αi 1.0688 Predict by user’s training mean, on probe set
r̂i,j = βj 1.0528 Predict by movie’s training mean, on probe set
r̂i,j = μ + αi + βj , naive 0.9945 Two-way ANOVA, no iteraction
r̂i,j = μ + αi + βj 0.9841 Two-way ANOVA, no iteraction
“Global effects” 0.9657 Bell and Koren (2007a, 2007b, 2007c)
Cinematch, on quiz set 0.9514 As reported by Netflix
Cinematch, on test set 0.9525 Target is to beat this by 10%
kNN 0.9174 Bell and Koren (2007a, 2007b, 2007c)
“Global” + SVD 0.9167 Bell and Koren (2007a, 2007b, 2007c)
SVD 0.9167 Bell and Koren (2007a, 2007b, 2007c), on probe set
“Global” + SVD + “joint kNN” 0.9071 Bell and Koren (2007a, 2007b, 2007c), on probe set
“Global” + SVD + “joint kNN” 0.8982 Bell and Koren (2007a, 2007b, 2007c), on quiz set
Simon Funk 0.8914 An early submission; Leaderboard
TemporalDynamics + SVD++ 0.8799 Koren (2009)
Arkadiusz Paterek’s best score 0.8789 An ensemble of many methods; Leaderboard
ML Team: RBM + SVD 0.8787 See Section 6; Leaderboard
Gravity’s best score 0.8743 November 2007; Leaderboard
Progress Prize, 2007, quiz 0.8712 Bell, Koren and Volinsky (2007a, 2007b, 2007c)
Progress Prize, 2007, test 0.8723 As above, but on the test set
Progress Prize, 2008, quiz 0.8616 Bell, Koren and Volinsky (2008), Toscher and Jahrer (2008)
Progress Prize, 2008, test 0.8627 As above, but on the test set
Grand Prize, target 0.8572 10 % below Cinematch’s RMSE on test set
Grand Prize, runner up 0.8553 The Ensemble, 20 minutes too late; on quiz set
Grand Prize, runner up 0.8567 As above, but on the test set
Grand Prize, winner 0.8554 BellKor + BigChaos + PragmaticTheory, on quiz set
Grand Prize, winner 0.8567 As above, but on the test set

Selected RMSE values, compiled from various sources. Except as noted, RMSE values shown are either for the probe set
after fitting on the training data with the probe set held out, or for the quiz set (typically from the Netflix Leaderboard)
after fitting on the training data with the probe set included.

4. ANOVA BASELINES

ANOVA methods furnish baselines for many anal-
yses. One basic approach—referred to as preprocess-
ing—involves first removing global effects such as
user and movie means, and using the residuals as in-
put to subsequent models. Alternatively, such “row”
and “column” effects can be incorporated directly into
those models where they are sometimes referred to as
biases. In any case, most models work best when global
effects are explicitly accounted for. In this section we
discuss minimizing the sum of squared errors criterion∑∑

(i,j)∈C
(ri,j − r̂i,j )

2(4.1)

using various ANOVA methods for the predictions r̂i,j
of the user-movie ratings ri,j . Due to the large number
of parameters, regularization (i.e., penalization) would

normally be used, but we reserve our discussions of
regularization issues to Section 8.

We first note that the best fitting model of the form

r̂i,j ≡ μ for all i, j,(4.2)

obtained by setting μ = 3.6033, the mean of all user-
movie ratings in the training set (with probe removed),
results in an RMSE on the training set equal to its
standard deviation 1.0846; on the probe set, using this
same μ results in an RMSE of 1.1296, although the ac-
tual mean and standard deviation for the probe set5 are
3.6736 and 1.1274.

Next, if we predict each rating by the mean rating for
that user on the training set, thus fitting the model

r̂i,j = μ + αi,(4.3)

5Note that the difference between the squares of the probe’s
1.1296 and 1.1274 RMSE values must equal the squared difference
between the two means, 3.6736 and 3.6033.
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we obtain an RMSE of 0.9923 on the training set, and
1.0688 using the same values on the probe. If, instead,
we predict each rating by the mean for that movie, thus
fitting

r̂i,j = μ + βj ,(4.4)

we obtain RMSE values 1.0104 and 1.0528 on the
training and probe sets, respectively. The solutions for
(4.2)–(4.4) are just the least squares fits associated with∑∑

(i,j)∈C
(ri,j − μ)2,

∑∑
(i,j)∈C

(ri,j − μ − αi)
2 and(4.5)

∑∑
(i,j)∈C

(ri,j − μ − βj )
2,

respectively, where C is the set of indices (i, j) over the
training set. Histograms of the user and movie means
were given in Figure 4; we note, for later use, that the
the variances of the user and movie means on the test
set (with probe removed) are 0.23074 and 0.27630,
corresponding to standard deviations of 0.48035 and
0.52564, respectively.6

We now consider two-factor models of the form

r̂i,j = μ + αi + βj .(4.6)

Identifiability conditions, such as
∑

i αi = 0 and∑
j βj = 0, would normally be imposed, although they

become unnecessary under typical regularization. If we
were to proceed as in a balanced two-way layout (i.e.,
with no ratings missing), then we would first estimate
μ as the mean of all available ratings; the values of αi

and βj would then be estimated as the row and column
means, over the available ratings, after μ has been sub-
tracted throughout. Doing this results in RMSE values
of 0.9244 and 0.9945 on the training and probe sets.
If we proceed sequentially, the order of the operations
for estimating the αi’s and the βj ’s will matter: If we
estimate the αi’s first and subtract their effects before
estimating the βj ’s, the result will not be the same as
first estimating the βj ’s and subtracting their effect be-
fore estimating the αi’s; these procedures result, re-
spectively, in RMSE values of 0.9218 and 0.9177 on
the training set.

The layout for the Netflix data is unbalanced, with
the vast majority of user-movie pairings not rated; we

6These values are useful for assessing regularization issues; see
Section 8.

therefore seek to minimize∑
(i,j)∈C

(ri,j − μ − αi − βj )
2(4.7)

over the training set. This quadratic criterion is convex,
however, standard methods for solving the “normal”
equations, obtained by setting derivatives with respect
to μ, αi and βj to zero, involve matrix inversions which
are not feasible over such high dimensions. The opti-
mization of (4.7) may, however, be carried out using
either an EM or a gradient descent algorithm. When no
penalization is imposed, minimizing (4.7) results in an
RMSE value of 0.9161 on the training set, and 0.9841
on the probe subset.

A consideration when fitting (4.6) as well as other
models is that some predicted ratings r̂i,j can fall out-
side the [1,5] range. This can occur when highly rated
movies are rated by users prone to giving high ratings,
or when poorly rated movies are rated by users prone
to giving low ratings. Under optimization of (4.7) over
the test set, approximately 5.1 million r̂i,j estimates fall
below 1, and 19.4 million fall above 5. Although we
may Winsorize (clip) these r̂i,j to lie in [1,5], clipping
in advance need not be optimal when residuals from
a baseline fit are input to other procedures. We do not
consider here the problem of minimizing (4.7) when
μ + αi + βj there is replaced by a Winsorized version.

Of course, not all is well here. The differences in
RMSE values between the training and the probe sets
reflect temporal effects, some of which were already
noted. Furthermore, these models have parameteriza-
tions of high-dimensions and have therefore been over-
fit, resulting in inferior predictions. These issues will
be dealt with in Sections 8 and 9.

Finally, we remark that interaction terms can be
added to (4.6). The standard approach r̂i,j = μ + αi +
βj + γi,j will not be effective, although it could possi-
bly be combined with regularization. Alternatively, in-
teractions could be based on user × movie groupings
via “many to one” functions a(i) and b(j), and models
such as

r̂i,j = μ + αi + βj + γa(i),b(j).(4.8)

There are many possibilities for defining such groups;
for example, the covariates discussed in Section 11 or
nearest neighbor methods (kNN) can be used to con-
struct suitable a(i) and b(j). Some further interaction-
type ANOVA models are considered in Section 10.
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5. SVD METHODS

In statistics, the singular value decomposition (SVD)
is best known for its connection to principal compo-
nents: If X = (X1,X2, . . . ,Xn)

′ is a random vector of
means 0, and n × n covariance matrix �, then one
may represent � as a linear combination of mutually
orthogonal rank 1 matrices, as in

� =
n∑

j=1

λjPjP
′
j ,

where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are ordered eigenval-
ues of �, and Pj corresponding orthonormal (column)
eigenvectors. The principal components are the ran-
dom variables P ′

jX. Less commonly known is that the

n × n matrix T (k) = ∑k
j=1 λjPjP

′
j gives the best rank

k reconstruction of �, in the sense of minimizing the
Frobenius norm ‖� − T (k)‖, defined as the square root
of the sum of the squares of its entries.

These results generalize. If A is an arbitrary real-
valued m × n matrix, its singular value decomposition
is given by7

A = UDV ′,

where U = (U1,U2, . . . ,Um) is an m × m matrix
whose columns Uj are orthonormal eigenvectors of
AA′, where V = (V1,V2, . . . , Vn) is an n × n ma-
trix whose columns Vj are orthonormal eigenvectors
of A′A, and where D is an m × n “diagonal” matrix
whose diagonal entries may be taken as the descending
order nonnegative values

λj = +
√

{eigvalAA′}j
= +

√
{eigvalA′A}j , j = 1,2, . . . ,min(m,n),

called the singular values of A. The columns of V

and U provide natural bases for inputs to and out-
puts from the linear transformation A. In particu-
lar, AVj = λjUj , A′Uj = λjVj , so given an input
B = ∑n

j=1 cjVj , the corresponding output is AB =∑min(m,n)
j=1 λjcjUj .
Given an SVD of A, the Eckart–Young Theorem

states that, for a given k < min(m,n), the best rank
k reconstruction of A, in the sense of minimizing the
Frobenius norm of the difference, is U(k)D(k)(V (k))′,
where U(k) is the m × k matrix formed from the first k

columns of U , V (k) is the n × k matrix formed by the

7If A is complex-valued, these relations still hold, with conjugate
transposes replacing transposes.

first k columns of V , and D(k) is the upper left k × k

block of D. This reconstruction may be expressed in
the form FG′ where F is m × k and G is k × n; the
reconstruction is thus formed from the inner products
between the k-vectors comprising F with those com-
prising G. These k-vectors may be thought of as as-
sociated, respectively, with the rows and the columns
of A, and (in applications) the components of these
vectors are often referred to as features. A numeri-
cal consequence of the Eckart–Young Theorem is that
“best” rank k approximations can be determined iter-
atively: given a best rank k − 1 approximation, FG′,
say, a best rank k approximation is obtained by at-
taching a column vector to each of F and G which
provide a best fit to the residual matrix A − FG′.
SVD algorithms can therefore be quite straightforward.
Here, however, we are specifically concerned with al-
gorithms applicable to matrices which are sparse. We
briefly discuss two such algorithms, useful in collabo-
rative filtering, namely, alternating least squares (ALS)
and gradient descent. Some relevant references are Bell
and Koren (2007c), Bell, Koren and Volinsky (2007a),
Funk (2006/2007), Koren, Bell and Volinsky (2009),
Raiko, Ilin and Karhunen (2007), Srebro and Jaakkola
(2003), Srebro, Rennie and Jaakkola (2005), Takacs et
al. (2007, 2008a, 2008b, 2008c), Wu (2007) and Zhou
et al. (2008). See also Hofmann (2001a, 2004), Hof-
mann and Puzicha (1999), Kim and Yum (2005), Mar-
lin and Zemel (2004), Rennie and Srebro (2005), Sali
(2008) and Zou et al. (2006).

The alternating least squares (ALS) method for de-
termining the best rank p reconstruction involves ex-
pressing the summation in the objective function in two
ways:

∑∑
C

(
ri,j −

p∑
k=1

ui,kvj,k

)2

=
J∑

j=1

∑
i∈I (j)

(
ri,j −

p∑
k=1

ui,kvj,k

)2

(5.1)

=
I∑

i=1

∑
j∈J (i)

(
ri,j −

p∑
k=1

ui,kvj,k

)2

.

The ui,k may be initialized using small independent
normal variables, say. Then, for each fixed j , we carry
out the least squares fit for the vj,k based on the in-
ner sum in the middle expression of (5.1). And then,
for each fixed i, we carry out the least squares fit for
ui,k based on the inner sum of the last expressions in
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(5.1). This procedure is iterated until convergence; sev-
eral dozen iterations typically suffice.

ALS for SVD with regularization8 proceeds simi-
larly. For example, minimizing9

∑∑
C

(
ri,j −

p∑
k=1

ui,kvj,k

)2

(5.2)

+ λ1

I∑
i=1

‖ui‖2 + λ2

J∑
j=1

‖vj‖2

leads to iterations which alternate between minimizing

∑
i∈I (j)

(
ri,j −

p∑
k=1

ui,kvj,k

)2

+ λ1‖vj‖2(5.3)

with respect to the vj,k , and then minimizing

∑
j∈J (i)

(
ri,j −

p∑
k=1

ui,kvj,k

)2

+ λ2‖ui‖2(5.4)

with respect to the ui,k ; these are just ridge regression
problems.10

ALS can also be performed one feature at a time,
with the advantage of yielding factors in descending
order of importance. To do this, we initialize as before,
and again arrange the order of summation in the objec-
tive function in two different ways; for the first feature,
this is

J∑
j=1

[ ∑
i∈I (j)

(ri,j − ui,1vj,1)
2
]

(5.5)

=
I∑

i=1

[ ∑
j∈J (i)

(ri,j − ui,1vj,1)
2
]
.

8Although we prefer to postpone discussion of regularization to
the unified treatment attempted in Section 8, it is convenient to lay
out those SVD equations here.

9We prefer not to set λ1 = λ2 at the outset for reasons of con-
ceptual clarity; see Section 8. In fact, because a constant may pass
freely between user and movie features, generality is not lost by
taking λ1 = λ2. Generality is lost, however, when these values are
held constant across all features; see Section 8.

10Some contestants preferred the regularization

∑∑
C

[(
ri,j −

p∑
k=1

ui,kvj,k

)2

+ λ(‖ui‖2 + ‖vj‖2)

]

instead of (5.2), which changes the λ1 and λ2 in (5.3) and (5.4) into
Ij λ and Jiλ, respectively. In Section 8 we argue that this modifica-
tion is not theoretically optimal.

We then iterate between the least squares problems of
the inner sums in (5.5), namely,

v̂j,1 = ∑
i∈I (j)

ui,1ri,j

/ ∑
i∈I (j)

u2
i,1(5.6)

for all j , and then

ûi,1 = ∑
j∈J (i)

vj,1ri,j

/ ∑
j∈J (i)

v2
j,1(5.7)

for all i, until convergence. After k − 1 features have
been fit, we compute the residuals

ei,j = ri,j −
k−1∑
�=1

ui,�vj,�

and replace (5.6) and (5.7) by

v̂j,k = ∑
i∈I (j)

ui,kei,j

/ ∑
i∈I (j)

u2
i,k

and

ûi,k = ∑
j∈J (i)

vj,kei,j

/ ∑
j∈J (i)

v2
j,k,

ranging over all j and all i, respectively.
Regularization in one-feature-at-a-time ALS can be

effected in several ways. Bell, Koren and Volinsky
(2007a) shrink the residuals ei,j via

ei,j ← ni,j

ni,j + λk

ei,j ,

where ni,j = min(Ij , Ji) measures the “support” for
ri,j , and they increase the shrinkage parameter λk with
each feature k. Alternately, one could add a regulariza-
tion term

λk(‖uk‖2 + ‖vk‖2)

when fitting the kth feature, choosing the λk by cross-
validation.

Finally, we consider gradient descent approaches for
fitting SVD models. For an SVD of dimension p, say,
we first initialize all ui,k and vj,k in

∑∑
C

(
ri,j −

p∑
k=1

ui,kvj,k

)2

.

Then write

ei,j = ri,j −
p∑

k=1

ui,kvj,k,

and note that

∂e2
i,j

∂ui,k

= −2ei,j vj,k
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and

∂e2
i,j

∂vj,k

= −2ei,j ui,k.

Updating can then be done locally following the nega-
tive gradients:

unew
i,k = uold

i,k + 2ηei,j v
old
j,k and

(5.8)
vnew
j,k = vold

j,k + 2ηei,ju
old
i,k ,

where the learning rate η controls for overshoot. For a
given (i, j) ∈ C , these equations are used to update the
ui,k and vj,k for all k; we then cycle over the (i, j) ∈ C
until convergence. If we regularize11 the problem, as in

∑∑
C

(
ri,j −

p∑
k=1

ui,kvj,k

)2

(5.9)

+ λ

(∑
i

‖ui‖2 + ∑
j

‖vj‖2
)
,

the update equations become

unew
i,k = uold

i,k + η

(
2ei,j v

old
j,k − λ

Ji

uold
i,k

)
and

(5.10)

vnew
j,k = vold

j,k + η

(
2ei,j u

old
i,k − λ

Ij

vold
j,k

)
.

We note that, as in ALS, there are other ways to se-
quence the updating steps in gradient descent. Simon
Funk (2006/2007), for instance, trained the features
one at a time. To train the kth feature, one initial-
izes the ui,k and vj,k randomly, and then loops over
all (i, j) ∈ C , updating the kth feature for all users
and all movies. The updating equations are as before
[e.g., (5.10)] except based on residuals ei,j = ri,j −∑k

�=1 ui,�vj,�. After convergence, one proceeds to the
next feature.

We remark that sparse SVD problems are known
to be nonconvex and to have multiple local minima;
see, for example, Srebro and Jaakkola (2003). Never-
theless, starting from different initial conditions, we
found that SVD seldom settled into entirely unsatis-
factory minima, although the minima attained did vary

11If, instead of (5.9), we regularized as∑∑
C

[(ri,j − u′
ivj )2 + λ(‖ui‖2 + ‖vj‖2)],

then the gradient descent update equations (5.10) become

unew
i,k = uold

i,k + η(2ei,j vold
j,k − λuold

i,k ) and

vnew
j,k = vold

j,k + η(2ei,j uold
i,k − λvold

j,k).

slightly. The magnitude of these differences was com-
mensurate with the variation inherent among the op-
tions available for regularization. We also found that
averaging the results from several SVD fits started at
different initial conditions could lead to better results
than a single SVD fit of a higher dimension. On this
point, see also Wu (2007). Finally, we note the re-
cent surge of work on a problem referred to as ma-
trix completion; see, for example, Candes and Plan
(2009).

6. NEURAL NETWORKS AND RBMS

A restricted Boltzman machine (RBM) is a neural
network consisting of one layer of visible units, and
one layer of invisible ones; there are no connections
between units within either of these layers, but all units
of one layer are connected to all units of the other
layer. To be an RBM, these connections must be bidi-
rectional and symmetric; some definitions require that
the units only take on binary values, but this restriction
is unnecessary. We remark that the symmetry condi-
tion is only needed so as to simplify the training pro-
cess. See Figure 7; additional clarification will emerge
from the discussion below. The name for these net-
works derives from the fact that their governing proba-
bility distributions are analogous to the Boltzman dis-
tributions which arise in statistical mechanics. For fur-
ther background, see, for example, Hertz, Krogh and
Palmer (1991), Section 7.1, Izenman (2008), Chap-
ter 10, or Ripley (1996), Section 8.4. See also Bishop
(1995, 2006). We will describe the RBM model that
has been applied to the Netflix data by Salakhutdinov,

FIG. 7. The RBM model for a single user: Each of the user’s hid-
den units is connected to every visible unit (a multinomial obser-
vation) that represents a rating made by that user. Every user is
associated with one RBM, and the RBM models for the different
users are linked through the common symmetric weight parameters
Wk

j,f .
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Mnih and Hinton (2007), whom we will also refer to as
SMH.

In the SMH model, to each user i, there corresponds
a length F vector of hidden (i.e., unobserved) units, or
features, h = (h1, h2, . . . , hF ). These features, hf , for
f = 1,2, . . . ,F , are random variables posited to take
on binary values, 0 or 1. Note that subscripting to indi-
cate the dependence of h on the ith user has been sup-
pressed. Next, instead of thinking of the ratings of the
ith user as the collection of values ri,j for j ∈ J (i), we
think of this user’s ratings as the collection of vectors
vj = (v1

j , v
2
j , . . . , v

K
j ), for j ∈ J (i), that is, for each of

the movies he or she has seen. Each of these vectors
is defined by setting all of its elements to 0, except for
one: namely, vk

j = 1, corresponding to ri,j = k. Here
K is the number of possible ratings; for Netflix, K = 5.
The collection of these vj vectors for our ith user [with
j ∈ J (i)] will be denoted by v. Here again, the depen-
dence of v, as well as of the vj and the vk

j , on the user
i is suppressed.

We next introduce the symmetric weight parameters
Wk

j,f for 1 ≤ j ≤ J , 1 ≤ f ≤ F and 1 ≤ k ≤ K , which
link each of the F hidden features of a user with each
of the J possible movies; these weights also carry a
dependence on the rating values k. The Wk

j,f are not
dependent on the user; the same weights apply to all
users, however, only weights for the movies he or she
has rated will be relevant for any particular user.

We next specify the underlying stochastic model.
First, the distributions of the (v, h) are assumed to
be independent across users. We therefore only need
to specify a probability distribution on the collection
(v, h) for the ith user. This distribution is determined
by its two conditional distributions modeled as follows:
The conditional distribution of the ith user’s observed
ratings information v, given that user’s hidden features
vector h, is modeled as a (one-trial) multinomial distri-
bution

P(vk
j = 1|h)

(6.1)

= exp(bk
j + ∑F

f =1 hf Wk
j,f )∑K

�=1 exp(b�
j + ∑F

f =1 hf W�
j,f )

,

where the denominator is just a normalizing factor.
Next, the conditional distributions of the ith user’s
hidden features variables, given that user’s observed
ratings v, are modeled as conditionally independent
Bernoulli variables

P(hf = 1|v) = σ

(
bf + ∑

j∈J (i)

K∑
k=1

vk
jW

k
j,f

)
,(6.2)

where σ(x) = 1/(1 + e−x) is the sigmoidal function.
Note that (6.2) is equivalent to the linear logit model

log
(

P(hf = 1|v)

1 − P(hf = 1|v)

)
(6.3)

= bf + ∑
j∈J (i)

K∑
k=1

vk
jW

k
j,f ;

in effect, (6.2)/(6.3) models user features in terms of
the movies the user has rated, and the user’s ratings
for them. Note that the weights (interaction parame-
ters) Wk

j,f are assumed to act symmetrically in (6.1)

and (6.2). The parameters bk
j and bf are referred to as

biases; the bk
j may be initialized to the logs of their re-

spective sample proportions over all users. We remark
that in this model there is no analogue for user biases.

To obtain the joint density of v and h from their two
conditional distributions, we make use of the following
result: Suppose f (x, y) is a joint density for (X,Y ),
and that f1(x|y), f2(y|x) are the corresponding condi-
tional density functions for X|Y and Y |X. Then noting
the elementary equalities

f (x, y) = f1(x|y) × f2(y|x∗)
f1(x∗|y)

× fX(x∗)

= f2(y|x) × f1(x|y∗)
f2(y∗|x)

× fY (y∗),

we see that f (x, y) can be determined from f1 and f2
since it is proportional to either of

f1(x|y) × f2(y|x∗)
f1(x∗|y)

and f2(y|x) × f1(x|y∗)
f2(y∗|x)

.

Here fX and fY are the marginals of X and Y , and the
choices of x∗ and y∗ are arbitrary. It follows that the
joint density of (v, h) satisfies the proportionality

p(v,h) ∝ P2(h|v)P1(v|h∗)
P2(h∗|v)

;

with the choice h∗ = 0, this yields

p(v,h) ∝ exp{−E(v,h)},
where

E(v,h) = − ∑
j∈J (i)

F∑
f =1

K∑
k=1

Wk
j,f hf vk

j − ∑
j∈J (i)

K∑
k=1

vk
j b

k
j

−
F∑

f =1

hf bf + ∑
j∈J (i)

log

(
K∑

k=1

bk
j

)
.
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The computations here just involve taking products
over the observed ratings using (6.1), and over the hid-
den features using (6.2). By analogy to formulae in sta-
tistical mechanics, E(v,h) is referred to as an energy;
note that only movies whose ratings are known con-
tribute to it. The joint density of (v, h) can therefore be
expressed as

p(v,h) = exp{−E(v,h)}∑
v′,h′ exp{−E(v′, h′)} ,

so that the likelihood function (i.e., the marginal distri-
bution for the observed data) is

p(v) =
∑

h exp{−E(v,h)}∑
v′,h′ exp{−E(v′, h′)} .(6.4)

We will use the notation

Z = ∑
v′

∑
h′

exp
(−E(v′, h′)

)
for the denominator term of (6.4).

Now the updating protocol for the Wk
j,f is given by

�Wk
j,f ≡ ε

∂ logp(v)

∂Wk
j,f

,

where ε is a “learning rate.” To determine �Wk
ij , we

will need the derivatives
∂E(v,h)

∂Wk
j,f

= −hf vk
j

and
∂Z

∂Wk
j,f

= ∑
v′

∑
h′

exp{−E(v′, h′)}h′
f vk

j

′
.

Now
∂ logp(v)

∂Wk
j,f

= ∂ log(
∑

h exp(−E(v,h)))

∂Wk
j,f

(6.5)

− ∂ logZ

∂Wk
j,f

;

the first term on the right in (6.5) equals

1∑
h exp(−E(v,h))

∑
h

exp
(−E(v,h)

)
hf vk

j

= ∑
h

p(h|v)hjv
k
i ,

while the second term on the right in (6.5) is

1

Z

∂Z

∂Wk
j,f

= 1

Z

∑
v′

∑
h′

exp
(−E(v′, h′)

)
h′

f vk
j

′

= ∑
v′

∑
h′

p(v′, h′)h′
f vk

j

′
.

Hence, altogether,

�Wk
j,f

= ε

(∑
h

p(h|v)hf vk
j − ∑

v′

∑
h′

p(v′, h′)h′
j v

k
i

′)
,

or, expressed more concisely,

�Wk
j,f = ε(〈vk

j hf 〉data − 〈vk
j hf 〉model).(6.6)

Similarly, we obtain the updating protocols

�bf = ε(〈hf 〉data − 〈hf 〉model)(6.7)

and

�bk
j = ε(〈vk

j 〉data − 〈vk
j 〉model).(6.8)

Note that the gradients here are for a single user only;
therefore, the three updating equations (6.6), (6.7) and
(6.8) must first be averaged over all users.

The updating equations (6.6), (6.7) and (6.8) for im-
plementing maximum likelihood “learning” involves
two forms of averaging. The averaging over the “data,”
that is, based on the p(h|v), is relatively straightfor-
ward. However, the averaging over the “model” is im-
practical, as it requires Gibbs-type MCMC sampling
from p(v,h) which involves iterating between (6.1)
and (6.2). SMH instead suggest running this Gibbs
sampler for only a small number of steps at each stage,
a procedure referred to as “contrastive divergence”
(Hinton, 2002). For further details, we refer the reader
to SMH.

Numerous variations on the model defined by (6.1)
and (6.2) are possible. In particular, the user features
h may be modeled as Gaussian variables having, say,
unit variances. In this case the model for P(vk

j = 1|h)

remains as at (6.1), but (6.2) becomes

P(hf = h|v)

= 1√
2π

exp

{
−1

2

(
h − bf − ∑

j∈J (i)

K∑
k=1

vk
jW

k
j,f

)2}
.

The marginal distribution p(v) remains as at (6.4) ex-
cept with energy term

E(v,h) = − ∑
j∈J (i)

F∑
f =1

K∑
k=1

Wk
j,f hf vk

j − ∑
j∈J (i)

K∑
k=1

vk
j b

k
j

+ 1

2

F∑
f =1

(hf − bf )2 + ∑
j∈J (i)

log

(
K∑

k=1

bk
j

)
.

The parameter updating equations remain unchanged.
Salakhutdinov, Mnih and Hinton (2007) report that this
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Gaussian version does not perform as well as the binary
one; perhaps the nonlinear structure in (6.2) is useful
for modeling the Netflix data. Bell, Koren and Volinsky
(2007b, 2008), on the other hand, prefer the Gaussian
model.

SMH indicate that to contrast sufficiently among
users, good models typically require the number of bi-
nary user features to be not less than about F = 100.
Hence, the dimension of the weights W , which is
J × F × K , can be upward of ten million. The param-
eterization of W can be reduced somewhat by repre-
senting it as a product of matrices of lower rank, as
in Wk

j,f = ∑p
�=1 Ak

j�B�f . This approach reduces the
number of W parameters to J ×p ×K +p ×F , a fac-
tor of about p/F .

There is a further point which we mention only
briefly here, but return to in Section 11. While the Net-
flix qualifying data omits ratings, it does provide im-
plicit information in the form of which movies users
chose to rate; this is particularly useful for users hav-
ing only a small number of ratings in the training set.
In fact, the full binary matrix indicating which user-
movie pairs were rated (regardless of whether or not
the ratings are known) is an important information
source. This information is valuable because the values
missing in the ratings matrix are not “missing at ran-
dom” and for purposes of the contest, exploiting this
information was critical. It turns out that RBM mod-
els can incorporate such implicit information in a rel-
atively straightforward way; according to Bell, Koren
and Volinsky (2007b), this is a key strength of RBM
models. For further details we refer the reader to SMH.

SMH reported that, when they also incorporated
this implicit information, RBMs slightly outperformed
carefully-tuned SVD models. They also found that the
errors made by these two types of models were sig-
nificantly different so that linearly combining multi-
ple RBM and SVD models, using coefficients deter-
mined over the probe set, allowed them to achieve
an error rate over 6% better than Cinematch. The
ML@UToronto team’s Leaderboard score ultimately
attained an RMSE of 0.8787 on the quiz set (see Ta-
ble 1).

7. NEAREST NEIGHBOR (KNN) METHODS

Early recommender systems were based on near-
est neighbors (kNN) methods, and have the advan-
tage of conceptual and computational simplicity use-
ful for producing convincing explanations to users as
to why particular recommendations are being made

to them. Usually applied to the residuals from a pre-
liminary fit, kNN tries to identify (pairwise) similar-
ities among users or among movies and use these
to make predictions. Although generally less accurate
than SVD, kNN models capture local aspects of the
data not fitted completely by SVD or other global mod-
els we have described. Key references include Bell
and Koren (2007a, 2007b, 2007c), Bell, Koren and
Volinsky (2007a, 2008), Koren (2008, 2010), Sarwar
et al. (2001), Toscher, Jahrer and Legenstein (2008)
and Wang, de Vries and Reinders (2006). See also Her-
locker et al. (2000), Tintarev and Masthoff (2007) and
Ungar and Foster (1998).

While the kNN paradigm applies symmetrically to
movies and to users, we focus our discussion on movie
nearest neighbors, as these are the more accurately es-
timable, however, both effects are actually important.
A basic kNN idea is to estimate the rating that user i

would assign to movie j by means of a weighted av-
erage of the ratings he or she has assigned to movies
most similar to j among movies which that user has
rated:

r̂i,j =
∑

j ′∈N(j ;i) sj,j ′ri,j ′∑
j ′∈N(j ;i) sj,j ′

.(7.1)

Here the sj,j ′ are similarity measures which act as
weights, and N(j ; i) is the set of, say, K movies,
that i has seen and that are most similar to j . Letting
I (j, j ′) = I (j) ∩ I (j ′) be the set of users who have
seen both movies j and j ′, similarity between pairs of
movies can be measured using Pearson’s correlation

sj,j ′ =
∑

i∈I (j,j ′)(ri,j − r·,j )(ri,j ′ − r·,j ′)√∑
i∈I (j,j ′)(ri,j − r·,j )2

√∑
i∈I (j,j ′)(ri,j ′ − r·,j ′)2

,

or by the variant

sj,j ′ =
∑

i∈I (j,j ′)(ri,j − ri,·)(ri,j ′ − ri,·)√∑
i∈I (j,j ′)(ri,j − ri,·)2

√∑
i∈I (j,j ′)(ri,j ′ − ri,·)2

in which centering is at the user instead of the movie
means, or by cosine similarity

sj,j ′ =
∑

i∈I (j,j ′) ri,j ri,j ′√∑
i∈I (j,j ′) r

2
i,j

√∑
i∈I (j,j ′) r

2
i,j ′

.

The similarity measure is used to determine the nearest
neighbors, as well as to provide the weights in (7.1). In
practice, if an ANOVA, SVD and/or other fit is carried
out first, kNN would be applied to the residuals from
that fit; under such “centering” the behavior of the three
similarity measures above would be very alike. As the
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common supports I (j, j ′) vary greatly, it is usual to
regularize the sj,j ′ via a rule such as

sj,j ′ ← |I (j, j ′)|
|I (j, j ′)| + λ

sj,j ′ .

A more data-responsive kNN procedure could be
based on

r̂i,j = ∑
j ′∈N(j ;i)

wj,j ′ri,j ′,

where the weights wj,j ′ (which are specific to the ith
user) are meant to be chosen via least squares fits

arg min
w

∑
i′ �=i

(
ri′,j − ∑

j ′∈N(j ;i)
wj,j ′ri′,j ′

)2

.(7.2)

This procedure cannot be implemented effectively as
shown because enough ri′,j ′ ratings are often not avail-
able, however, Bell and Koren (2007c) suggest how
one may compensate for the missing ratings here in a
natural way.

Many variations of such methods can be proposed
and can produce slightly better estimates, although at
an increased computational burden; see Bell, Koren
and Volinsky (2008) and Koren (2008, 2010). For ex-
ample, user-specific weights, with their relatively inac-
curate local optimizations, could be replaced by global
weights having a relatively more accurate global opti-
mization, as in the model

r̂i,j = bi,j + ∑
j ′∈Nk(j ;i)

(ri,j ′ − bi,j ′)wj,j ′

(7.3)
+ ∑

j ′∈Nk(j ;i)
Ci,j ′ .

Here wj,j ′ is the same for all users, and the neighbor-
hoods are now Nk(j ; i) ≡ J (i) ∩ Nk(j), where Nk(j)

is the set of k movies most similar to j as determined
by the similarity measure. The sum involving the Ci,j ′
is included in order to model implicit information in-
herent in the choice of movies a user rated; for pur-
poses of the Netflix contest, this sum would include the
cases in the qualifying data. As a further enhancement,
the bi,j following the equality and the bi,j ′ within the
sum could be decoupled, with the second of these re-
maining as the original baseline values, and the first of
these set to μ + ai + bj and then trained simultane-
ously with the model. Furthermore, the sums in (7.3)
could each be normalized, for instance, using coeffi-
cients such as |Nk(j ; i)|−1/2.

8. DIMENSIONALITY AND PARAMETER
SHRINKAGE

The large number (often millions) of parameters
in the models discussed make them prone to overfit-
ting, affecting the accuracy of the prediction process.
Reducing dimensionality through penalization there-
fore becomes mission critical. This leads to consid-
erations which are relatively recent in statistics, such
as the effective number of degrees of freedom of a
regularized model and its use in assessing predic-
tive accuracy, as well as to the connections between
that viewpoint and James–Stein shrinkage and empir-
ical Bayes ideas. In this section we attempt to place
such issues within the Netflix context. A difficulty
which arises here stems from the distributional mis-
match between the training and validation data, how-
ever, we will sidestep this issue so as to focus on
key theoretical considerations. Our discussion draws
from Casella (1985), Copas (1983), Efron (1975, 1983,
1986, 1996, 2004), Efron et al. (2004), Efron and Mor-
ris (1971, 1972a, 1972b, 1973a, 1973b, 1975, 1977),
Houwelingen (2001), Morris (1983), Stein (1981), Ye
(1998) and Zou et al. (2007). See also Barbieri and
Berger (2004), Baron (1984), Berger (1982), Breiman
and Friedman (1997), Candes and Tao (2007), Car-
lin and Louis (1996), Fan and Li (2006), Friedman
(1994), Greenshtein and Ritov (2004), Li (1985), Mal-
lows (1973), Maritz and Lwin (1989), Moody (1992),
Robins (1956, 1964, 1983), Sarwar et al. (2000), Stone
(1974) and Yuan and Lin (2005).

Prediction Optimism

To give some context to our discussion, suppose Y

is an n × 1 random vector with entries Yi , for i =
1,2, . . . , n, all having finite second moment, and sup-
pose the mean of Y is modeled by a vector μ(β) with
entries μi(β), where β is a p × 1 vector of parameters.
We will assume μ(β) is twice differentiable, and that
it uniquely identifies β . We also assume that there is
a unique value of β , namely, β0, for which Y can be
modeled as

Yi = μi(β0) + ei,(8.1)

with the ei then assumed to have zero means, equal
variances Var(ei) = σ 2, and to be uncorrelated. The
vector μ(β) may or may not be based on a known,
fixed design matrix X; all that matters about X is that
it is considered known, and that it fully determines the
stochastic properties of Y .

Now let Y ∗, with entries Y ∗
i , be a stochastically in-

dependent copy of Y also defined on X, that is, on the
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same experiment. We consider expectation E to be de-
fined on the joint probability structure of (Y,Y ∗) or,
more precisely, of (Y,Y ∗)|X; sometimes E will act on
a function of Y alone, and sometimes on a function of
both Y and Y ∗. Our starting point is the pair of inequal-
ities

E inf
β

n∑
i=1

[Yi − μi(β)]2 < inf
β

E

n∑
i=1

[Yi − μi(β)]2

(8.2)

< E

n∑
i=1

[Y ∗
i − μi(β̂)]2,

which clearly will be strict, except in degenerate situa-
tions. The infimum in the middle expression is assumed
to occur at the value β = β0 identified at (8.1). The in-
fimum inside the expectation on the left occurs at the
value of β denoted as β̂; we interchangeably use the
notation β̂(n), β̂(Y ) and β̂(n)(Y ) for β̂ when we wish
to stress its dependence on the sample size n, on the
data Y , or on both. The μi(β̂) occurring in the right-
most expression in (8.2) refers to entries of μ(β̂(n)(Y )),
so that the Y ∗

i and μi(β̂) there are independent. The in-
equalities (8.2) have the interpretation

E(training error) < nσ 2 < E(prediction error),(8.3)

it being understood that here the predictions μ(β̂) are
for an independent repetition Y ∗ of the same random
experiment. Efron (1983) refers to the difference be-
tween prediction error and fitted error, that is, between
the right- and left-hand sides in (8.2)/(8.3), as the opti-
mism.

It is helpful, for the sake of exposition, to examine
the inequalities (8.2)/(8.3) for a linear model, where
μ(β) = Xβ , and X is n × p. In that case, the leftmost
and rightmost expressions in (8.2) are equidistant from
the middle one, and (8.2)/(8.3) become

(n − p)σ 2 < nσ 2 < (n + p)σ 2.(8.4)

Here the leftmost evaluation follows from the standard
regression ANOVA, and corresponds to the fact that
unbiased estimation of σ 2 requires dividing the train-
ing error sum of squares by n − p, while the rightmost
evaluation follows from

E

n∑
i=1

[Y ∗
i − μi(β̂)]2 = E

n∑
i=1

[μi(β0) + e∗
i − μi(β̂)]2

= nσ 2 + E

n∑
i=1

[μi(β0) − μi(β̂)]2,

where the last expectation here evaluates as

E(Xβ0 − Xβ̂)′(Xβ0 − Xβ̂)

= E(β0 − β̂)′(X′X)(β0 − β̂)

= pσ 2

since β0 − β̂ has mean 0 and covariance σ 2(X′X)−1.
The inequalities (8.2)/(8.3) hold whether or not we

have a linear model μ(β) = Xβ , but the exact eval-
uations of their left- and right-most terms as at (8.4)
do not. However, these evaluations (as well as their
equidistances from nσ 2) continue to hold asymptoti-
cally: if the dimension of β stays fixed at p, and if
the design X changes with n in such a way that the
convergence of the least squares estimate β̂(n) to β0 is√

n-consistent, then both

lim
n→∞

{
nσ 2 − E inf

β

n∑
i=1

[Yi − μi(β)]2

}
= pσ 2(8.5)

and

lim
n→∞

{
E

n∑
i=1

[Y ∗
i − μi(β̂)]2 − nσ 2

}
= pσ 2.(8.6)

The proofs involve Taylor expanding μ(β̂(n)) around
β = β0 (recall μ is twice differentiable) and following
the proofs for the linear case; terms in the expansion
beyond the linear one are inconsequential by the

√
n-

consistency.

Effective Degrees of Freedom

The distances pσ 2 across both boundaries in (8.4),
as well as at (8.5) and (8.6), lead to a natural def-
inition for the effective number of degrees of free-
dom of a statistical fitting procedure. In the linear
case, μ(β) = Xβ , using the least squares estimator
β̂ = (X′X)−1X′Y , we have μ(β̂) = Xβ̂ = HY , where
H = X(X′X)−1X′. Assuming the columns of X are
not colinear, the matrices H and M = I − H project
onto orthogonal subspaces of dimensions p and n−p.
The occurrence of p at the left in (8.4) is usually
viewed as connected with the decomposition Y ′Y =
Y ′HY + Y ′MY and the fact that the projection matrix
H has rank p. For a projection matrix, however, rank
and trace are identical, but it is the trace which actually
matters.

To appreciate this, note that if μ̂i is any quantity de-
termined independently of Y ∗

i , then

E(Y ∗
i − μ̂i)

2 = E(Y ∗
i − μi)

2 + E(μ̂i − μi)
2.(8.7)
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On the other hand,

E(Yi − μ̂i)
2 = E(Yi − μi)

2 + E(μ̂i − μi)
2

(8.8)
− 2 Cov(Yi, μ̂i).

Taken together, and remembering that E(Y ∗
i − μi)

2 =
E(Yi − μi)

2, these give

E(Y ∗
i − μ̂i)

2 = E(Yi − μ̂i)
2 + 2 Cov(Yi, μ̂i),(8.9)

and then summing over i shows that the difference be-
tween the right- and the left-hand sides of (8.2) is

2
n∑

i=1

Cov(Yi, μ̂i).

Equating this with 2pσ 2 leads to the definition

effective d.f. ≡ 1

σ 2

n∑
i=1

Cov(Yi, μ̂i).(8.10)

The relations (8.7), (8.8) and (8.9) hold for any estima-
tor. But if μ̂ = HY , that is, for a linear estimator, the
covariances Cov(Yi, μ̂i) are just the diagonal elements
of H , so that

effective d.f. = 1

σ 2 trace(H).(8.11)

For nonlinear models, the (approximate) effective
number of degrees of freedom may be defined either
via (8.10), or via (8.11) if we use the trace of its locally
linear approximation μ(β̂) � μ(β0) + H(Y − μ(β0)),
with both of these definitions being justifiable asymp-
totically in view of (8.5) and (8.6), under the smooth-
ness condition referred to there.

Example: I × J ANOVA

To help fix ideas, it is instructive to consider the opti-
mization problem for the (complete) quadratically pe-
nalized I × J ANOVA12

I∑
i=1

J∑
j=1

(ri,j − μ − αi − βj )
2

(8.12)

+ λ1

(
I∑

i=1

α2
i

)
+ λ2

(
J∑

j=1

β2
j

)
.

We deliberately do not penalize for μ here because μ

is typically known to differ substantially from zero. We

12Unlike the SVD case, discussed in (5.2) and in footnote 8 of
Section 5, using different values for λ1 and λ2 is essential here.

will use the identity

I∑
i=1

J∑
j=1

(ri,j − μ − αi − βj )
2

=
I∑

i=1

J∑
j=1

[ri,j − r·,· − (ri,· − r·,·) − (r·,j − r·,·)]2

(8.13)

+ IJ (μ − r·,·)2 +
I∑

i=1

J [αi − (ri,· − r·,·)]2

+
J∑

j=1

I [βj − (r·,j − r·,·)]2,

where the “dots” represent averaging. It differs from
the standard ANOVA identity, but is derived similarly,
although it requires

∑I
i=1 αi = 0 and

∑J
j=1 βj = 0. Us-

ing (8.13), the optimization problem (8.12) separates,
leading to the solutions

μ̂ = r·,·,

α̂i = J

J + λ1
(ri,· − r·,·) and(8.14)

β̂j = I

I + λ2
(r·,j − r·,·).

Optimal choices for the regularization parameters
λ1 and λ2 in (8.12) are usually estimated by cross-
validation, however, here we wish to understand these
analytically. We can do this by minimizing Akaike’s
predictive information criterion (AIC),

AIC = −2 log(Lλ) + 2 df(λ),

where Lλ is the value (under λ-regularization) of the
likelihood for the {ri,j } at the MLE, and df(λ) is the
effective number of degrees of freedom; here λ ≡
(λ1, λ2). As we are in a Gaussian case, with an RMSE
perspective, this is (except for additive constants) the
same as Mallows’ Cp statistic,

Cp = {residual sum of squares}λ
σ 2 + 2 df(λ).

Minimizing this will (for linear models) be equivalent
to minimizing the expected squared prediction error,
defined as the rightmost term in (8.2), or (for nonlin-
ear models) to minimizing it asymptotically. For fur-
ther discussion of these points, see Chapter 7 of Hastie
et al. (2009).

Now, the effective number of degrees of freedom
associated with (8.12) can be determined by viewing
the minimizing solution to (8.12) as a linear transfor-
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mation, r̂ = Hλr , from the vector r consisting of the
observations ri,j , to the vector r̂ of fitted values r̂i,j .
The entries of the matrix Hλ are determined from the
relation r̂i,j = μ̂ + α̂i + β̂j , where μ̂, α̂i and β̂j are
given at (8.14). Thus, the effective number of degrees
of freedom, when penalizing by (λ1, λ2), is found to
be

df = traceHλ
(8.15)

= 1 + (I − 1)
J

J + λ1
+ (J − 1)

I

I + λ2
.

Next, for a given λ1 and λ2, the residual sum of
squares is

I∑
i=1

J∑
j=1

[
ri,j − r·,· − J

J + λ1
(ri,· − r·,·)

− I

I + λ2
(r·,j − r·,·)

]2

,

and this may be expanded as
I∑

i=1

J∑
j=1

[(ri,j − r·,·) − (ri,· − r·,·) − (r·,j − r·,·)]2

+ J

(
1 − J

J + λ1

)2 I∑
i=1

(ri,· − r·,·)2

+ I

(
1 − I

I + λ2

)2 J∑
j=1

(r·,j − r·,·)2,

where the first of the three terms here may subse-
quently be ignored.

Hence, the Cp criterion we seek to minimize can be
taken as

1

σ 2

I∑
i=1

J∑
j=1

[
ri,j − r·,· − J

J + λ1
(ri,· − r·,·)

− I

I + λ2
(r·,j − r·,·)

]2

+ 2
{

1 + (I − 1)
J

J + λ1
+ (J − 1)

I

I + λ2

}
or, equivalently,

1

σ 2

{
J

(
1 − J

J + λ1

)2 I∑
i=1

(ri,· − r·,·)2

+ I

(
1 − I

I + λ2

)2 J∑
j=1

(r·,j − r·,·)2

}

+ 2
{
(I − 1)

J

J + λ1
+ (J − 1)

I

I + λ2

}
.

The minimizations with respect to J/(J + λ1) and
I/(I +λ2) thus separate, and setting derivatives to zero
leads to the approximate solutions

λ1 =
{

σ 2∑I
i=1(ri,· − r·,·)2/(I − 1)

}
and

(8.16)

λ2 =
{

σ 2∑J
j=1(r·,j − r·,·)2/(J − 1)

}
.

On substituting these into (8.15), we also see that un-
der the theoretically optimal regularization the effec-
tive number of degrees of freedom for the ANOVA be-
comes

(I + J − 1)

−
{
I − 1

J

σ 2

(1/(I − 1))
∑I

i=1(ri,· − r·,·)2

+ J − 1

I

σ 2

(1/(J − 1))
∑J

j=1(r·,j − r·,·)2

}
;

the expression in braces gives the reduction in degrees
of freedom which results under the optimal penaliza-
tion. Equations (8.16) and (8.14) may be interpreted as
saying that optimal penalization (or shrinkage) should
be done differentially by parameter groupings, with
each group of (centered) parameters shrunk in accor-
dance with that group’s variability (the variances of the
row and column effects here) relative to the variabil-
ity of error, and each parameter in accordance with its
support base (i.e., with the information content of the
data relevant to its estimation—here I and J ).

Empirical Bayes Viewpoint

The preceding computations may be compared with
an empirical Bayes approach. For this we will assume
that ri,j = μ + αi + βj + ei,j , with the ei,j being inde-
pendent N(0, σ 2) variables. For simplicity, we assume
that μ and σ 2 are known. On the parameters, αi and
βj , respectively, we posit independent N(0, σ 2

1 ) and
N(0, σ 2

2 ) priors, with σ 2
1 and σ 2

2 being hyperparame-
ters. Multiplying up the I + J + IJ normal densities
for the αi , βj and ri,j , and again using (8.13), we can
complete squares and integrate out the αi and βj . This
leads to a likelihood function for σ 2

1 and σ 2
2 which, to

within a factor not depending on σ 2
1 and σ 2

2 , is given by
( √

2πσ√
Jσ 2

1 + σ 2

)I

exp

[(
− 1

2σ 2

)(
J − J 2

J + (σ 2/σ 2
1 )

)

·
I∑

i=1

(ri,· − r·,·)2

]
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·
( √

2πσ√
Iσ 2

2 + σ 2

)J

exp

[(
− 1

2σ 2

)(
I − I 2

I + (σ 2/σ 2
2 )

)

·
J∑

j=1

(r·,j − r·,·)2

]
,

and maximizing this leads to the estimates

σ̂ 2
1 = 1

I

I∑
i=1

(ri,· − r·,·)2 − σ 2

J
and

σ̂ 2
2 = 1

J

J∑
j=1

(r·,j − r·,·)2 − σ 2

I
.

The resulting empirical Bayes Gaussian prior can thus
be seen as being essentially equivalent to the quadrat-
ically penalized optimization (8.12) under the optimal
choice (8.16) for the penalty parameters λ1, λ2.

Generalizing

We begin with a few remarks on the penalized sparse
ANOVA ∑∑

C
(ri,j − μ − αi − βj )

2

(8.17)

+ λ1

(
I∑

i=1

α2
i

)
+ λ2

(
J∑

j=1

β2
j

)
.

This optimization can be carried out by EM or by gra-
dient descent; it has no analytical solution, but anal-
ogy with the complete case suggests that the shrinkage
rules

α̂shrink
i = Ji

Ji + λ1
α̂i and β̂shrink

j = Ij

Ij + λ2
β̂j ,

where α̂i and β̂j are the unpenalized estimates, will
be approximately optimal provided we again take λ1
and λ2 as ratios of row and column variation relative
to error as at (8.16). Koren (2010) proposed the less
accurate but simpler penalization

β̂j =
∑

i∈I (j)(ri,j − μ̂)

Ij + λ2

first, and then

α̂i =
∑

j∈J (i)(ri,j − μ̂ − β̂j )

Ji + λ1
,

where μ̂ is the overall mean; typical values he used13

were λ1 = 10 and λ2 = 25.

13Koren’s values were targeted to fit the probe set. If the probe
and training sets had identical statistical properties, these values

For more complex models, such as sparse SVD,
the lessons here suggest that penalties on parameter
groupings should correspond to priors which model
the distributions of the groups. For Gaussian priors
(quadratic regularization) we then need estimates for
the group variances. For SVD we thus want estimates
of the variances of each of the user and movie features.
We experimented with fitting SVDs using minimal
regularization—with features in descending order of
importance—first removing low usage users to better
assess the true user variation. Because free constants
can move between corresponding user and movie fea-
tures, we examined products of the variances of corre-
sponding features. These do tend toward zero (theoret-
ically, this sequence must be summable) but appear to
do so in small batches, settling down and staying near
some small value, before settling still further, again
staying a while, and so on. Our explanation for this is
that there soon are no obvious features to be modeled,
and that batches of features then contribute small, ap-
proximately equal amounts of explanatory power. Such
considerations help suggest protocols for increasing
regularization as we proceed along features. It is an im-
portant point that, in principle, the number of features
may be allowed to become infinite, as long as their pri-
ors tend toward degeneracy sufficiently quickly.

Bell, Koren and Volinsky (2007a) proposed a par-
ticularly interesting empirical Bayes regularization for
the feature parameters in SVD. They modeled user
parameters as ui ∼ N(μ,�1), movie parameters as
vj ∼ N(ν,�2), and individual SVD-based ratings as
ri,j ∼ N(u′

ivj , σ
2), with the natural assumptions on in-

dependence. They fitted such models using an EM and
a Gibbs sampling procedure, alternating between fit-
ting the SVD parameters and fitting the parameters of
the prior. See also Lim and Teh (2007).

9. TEMPORAL CONSIDERATIONS

This section addresses the temporal discordances be-
tween the Netflix training and qualifying data sets. See,
for example, Figures 1 and 5 of Section 2 for evi-
dence of such effects. Peoples’ tastes—collectively and
individually—change with time, and the movie “land-
scape” changes as well. The specific user who submits

would likely have been smaller: recall that in Section 4 we ob-
tained variances of 0.23 and 0.28 for the user and movie means, and
RMSE values slightly below 1, suggesting the approximate values
λ1 ≈ λ2 ≈ 4.
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the ratings for an account may change, and day-of-
week as well as seasonal effects occur as well. Fur-
thermore, the introduction (and evolution) of a recom-
mender system itself affects ratings. Here we provide
a very brief overview of the main ideas which have
been proposed for dealing with such issues, although to
limit our scope, time effects are not emphasized in our
subsequent discussions. Key references here are Koren
(2008, 2009).

We first note that temporal effects can be entered
into models in a “global” way. Specifically, the stan-
dard baseline ANOVA can be modified to read

ri,j = μ + αi(t) + βj (t) + ei,j .

Here all effects are shown as functions which depend
on time, but the time arguments t can (variously) rep-
resent chronological time, or can represent a user-
specific or a movie-specific time ti or tj , or even a
jointly indexed time ti,j .

Time effects can also be incorporated into both SVD
and kNN type models. An example in the SVD case is
the highly accurate model

r̂ij (t) = μ + αi(t) + βj (t)

+ v′
j

(
ui(t) + |J (i)|−1/2

∑
j ′∈J (i)

Cj ′
)
,

referred to as “SVD++” by Koren (2009), and fit us-
ing both regularization and cross-validation. Here the
baseline values αi(t) and βj (t), as well the user ef-
fects ui(t), are both allowed to vary over time but—on
grounds that movies are more constant than users—the
movie effects vj are not. The last sum models feed-
back from the implicit information. Detailed proposals
for temporal modeling of the user and movie biases,
and for the user SVD factors, ui(t), as well as for mod-
eling temporal effects in nearest neighbor models may
be found in Koren (2008, 2009).

10. IN SEARCH OF MODELS

Examining and contrasting such models as ANOVA,
SVD, RBM and kNN is useful in a search for new
model classes. We first remark that the best fitting
models—such as SVD and RBM—have high-
dimensional, simultaneously fitted parameterizations.
On the other hand, useful models need not have, with
ANOVA and kNN both suggestive of this. If a model
has p parameters, and if it is viewed as spanning a p-
dimensional submanifold of RN , then we want p to not
be too large, and yet for this submanifold to contain a

vector close to the expected N -dimensional vector of
data to be fitted. For this to happen, the model will
have to reflect some substantive aspect of the structure
from whence the data arose. One striking feature of
collaborative filtering data is the apparent absence of
any single model that can explain most of the explain-
able variation observed. The reason for this may be that
the available data are insufficient to reliably fit such a
model. Were sufficient data available, it is tempting to
think that some variation of SVD might be such a sin-
gle model. In this section we indicate some extensions
to the models already discussed. Most of these were ar-
rived at independently, although many do contain fea-
tures resembling those in models proposed by others.
It is to be understood that regularization is intended to
be used with most of the procedures discussed.

Extending ANOVA

Likert scales, such as the Netflix stars system, are
subjective, with each user choosing for themselves
what rating (or ratings distribution) corresponds to an
average movie, and just how much better (or worse)
it needs to be to change that rating into a higher (or
a lower) one. This not only speaks to a centering for
each user, captured by αi terms, but also to a scaling
specific to each user, and suggests a variation of the
usual ANOVA of the form

ri,j = μ + αi + γiβj + error.(10.1)

The scaling factors γi here are meant to be shrunk to-
ward 1 in regularization. This model is of an interaction
type, and may be generalized to

ri,j = μ + αi + βj + Interact + error,(10.2)

where the Interact term in (10.2) can vary among14

(a) γiαiβj , (b) γjαiβj ,
(10.3)

(c) γiδjαi or (d) γiδjβj .

While these are all interaction models, note that (10.1)
is equivalent to a one-feature SVD with only a user
baseline. Likewise, note that (10.3)(a) and (10.3)(b)
can be viewed as truncated nonlinear SVDs. As an ex-
periment, we fitted (10.1) and obtained an RMSE of

14We do not mention ri,j = μ + αi + βj + γiβj which is equiv-
alent to (10.1), nor do we include γiδj or, equivalently, γiδj αiβj ,
in (10.3), as these are just single-feature SVDs with baseline. How-
ever, we mention here the model ri,j = βj + γjαi which is a sister
to (10.1), but has no convincing rationale behind it. Note also that
within the forms (10.3), the αi could be changed to |αi | or α2

i , and
similarly for the βj .
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0.90256 on the training set as compared with 0.9161
from the 2-way ANOVA fit of Section 4. In terms of
MSE, this reduction is more than 6 times that expected
under pure randomness.

Finally, we remark that ANOVA ideas can also be
adapted to model probability distributions of ratings.
A typical model of this type, in obvious notation, is

P [ri,j = k] ∝ exp
{
μ(k) + α

(k)
i + β

(k)
j

}
.

If we wish, the dependence of α
(k)
i on k here could be

suppressed. The numerical issues which arise here are
similar to those of the SVD-based multinomial model
described below.

Extending SVD

Likert scales are not intrinsically linear; the distance
between a 1 and 2 rating, for instance, is not equivalent
to the distance between a 4 and 5. This suggests that the
five possible rating values might first be transformed
into five other numbers, g(r) = g1, g2, g3, g4 and g5,
say. Since SVD is scale but not location invariant, such
transformation offers 4 degrees of freedom. The ri,j
can thus be transformed into new data, gi,j , say, and an
SVD fitted to the gi,j resulting in estimates ĝi,j = u′

ivj .
These fits may then be transformed back to the original
scale by fitting a transformation r̂i,j = h(u′

ivj ).
A further nonlinear extension to SVD is arrived at

by arguing that people and movies are not compara-
ble entities, so requiring their descriptors to have equal
lengths is artificial. Furthermore, users are much more
numerous than movies, so movie features are easier
to estimate, while user features create the more severe
overfitting. If we posit that each user is governed by p

features ui = (ui,1, ui,2, . . . , ui,p), and each movie by
q features vj = (vj,1, vj,2, . . . , vj,q), with p < q , we
may propose models such as

ri,j = μ + αi + βj +
p∑

k=1

q∑
�=1

ak,�ui,kvj,�

+
p∑

k=1

p∑
k′=1

q∑
�=1

bk,k′,�ui,kui,k′vj,�

+
p∑

k=1

q∑
�=1

q∑
�′=1

ck,�,�′ui,kvj,�vj,�′(10.4)

+
p∑

k=1

p∑
k′=1

q∑
�=1

q∑
�′=1

dk,k′,�,�′ui,kui,k′vj,�vj,�′

+ error.

Such models can allow for additional flexibility, and
modest gains from the lower-dimensional parameter-
ization combined with the reduced regularization re-
quired.

SVD can also be adapted to model the multinomial
distributions of the ri,j , instead of just their expected
values. A typical model of this type is

P [ri,j = k] = exp{u′
iv

k
j }∑K

�=1 exp{u′
iv

�
j }

;(10.5)

here each movie j is associated with five feature vec-
tors vk

j , one for each rating value k. Note that, ex-
cept for the absence of ratings-dependent movie biases,
(10.5) is similar to the defining equation (6.1) of the
RBM model. Because movies are relatively few com-
pared to users, the parameterization of such models is
not much greater than for a standard SVD. Further-
more, the user terms ui in (10.5) can be modeled as
sums of movie parameters, as indicated further below.
We remark that in one of our experiments, we tried to
fit such models solely using means and RMSE criteria,
as in

∑∑
(i,j)∈C

(
ri,j −

∑K
k=1 k exp{u′

iv
k
j }∑K

�=1 exp{u′
iv

�
j }

)2

+ penalty,

but encountered difficulties with convergence.

Deeper kNN

The kNN models of Section 7 can loosely be de-
scribed as one layer deep; they involve like-minded
users and/or similarly rated movies. However, this does
not exhaust the combinatorial possibilities. To focus on
one simple case, suppose user i has seen movies, j and
j ′, and that we wish to predict his or her rating for
movie j ′′. The remaining users can then be partitioned
into eighteen sets, according to whether they did or did
not see each of j , j ′ and j ′′, and if they had seen either
of j or j ′, according to whether their ratings did or did
not agree with i. Such partitioning can carry informa-
tion relevant to modeling i’s rating for j ′′, but we do
not pursue these issues here.

Lessons of the RBM

We start by recalling the defining equations (6.1) and
(6.2) for the RBM model in the form

P(ri,j = k|hi)
(10.6)

= exp(bk
j + ∑F

�=1 hi,�W
k
j,�)∑K

n=1 exp(bn
j + ∑F

�=1 hi,�W
n
j,�)
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and

P(hi,� = 1|ri) = σ

(
b� + ∑

j ′∈J (i)

W
ri,j ′
j ′,�

)
.(10.7)

Examining these equations leads to valuable insights.
First, the fact that (in this version of the model) the hid-
den user features are restricted to being binary seems
inessential, except possibly in contributing to regular-
ization. In any case, binary features are associated with
probabilities, so users are, in effect, being described
by continuously-valued quantities. Second, it is not
clear what essential data-fitting advantage is offered by
viewing the user features as being stochastic; indeed,
the probabilities associated with them may themselves
be regarded as nonstochastic descriptors. (It may be,
however, that this randomness proxies an underlying
empirical Bayes mechanism.) On the other hand, hav-
ing a probability model for the ri,j seems natural—and
perhaps even essential—for viewing the data in a fuller
context. Next, aside from its contribution to parsimony,
and to simplifying the fitting algorithms, the obliga-
tory symmetry of the Wk

j,� weights in (10.6) and (10.7)
seems restrictive. Finally, we remark that the limita-
tion on the bias terms bk

j in (10.6) to depend on movie
but not on user also seems restrictive. The RBM model
does offer certain advantages; in particular, it is train-
able.

It pays to consider in further detail what it is that
the RBM equations, (10.6) and (10.7), actually do. The
second of these equations, in effect, models each user’s
features as a function of the movies he or she has seen,
together with the ratings they had assigned to those
movies. Doing so limits the dimension of the parame-
terization for the user features, a highly desirable goal.
On the other hand, aside from the bk

j bias terms, and
aside from the stochastic nature of the user features,
the first equation models each of the multinomial prob-
abilities for the ri,j as a function of an SVD-like inner
product of the user’s feature vector with a movie fea-
tures vector (associated with the rating value k) whose
probability is being modeled.

Such considerations lead us to propose a model
which we arrived at by adapting the RBM equa-
tions (10.6) and (10.7) for P [ri,j = k|hi] and for
P [hi,� = 1|ri] into analogous equations for expecta-
tions, namely,

E(ri,j |hi) = g

(
bj +

F∑
�=1

hi,�W̃j,�

)
(10.8)

and

E(hi,�|ri) = b̃� + ∑
j ′∈J (i)

Wj ′,�(ri,j ′).(10.9)

Here we have separated the different roles for the
weights by using a tilde in (10.8); and because (10.8)
now models expectations rather than probabilities, the
dependence of the weights on k there has been re-
moved. We next propose to use the right-hand side of
(10.9) to estimate hi,�, and substitute it into (10.8); the
bias terms then all combine, and we are led to the sin-
gle equation model

E(ri,j ) = g

(
bj +

F∑
�=1

{ ∑
j ′∈J (i)

Wj ′,�(ri,j ′)
}
W̃j,�

)

or, generalizing this slightly,

E(ri,j )

(10.10)

= g

(
bj + weight

F∑
�=1

{ ∑
j ′∈J (i)

Wj ′,�(ri,j ′)
}
W̃j,�

)
.

This model has SVD-like weights (features) W̃j,� for
the movies, and it models each user’s weights (fea-
tures) as a function of the movies they have seen, using
weights associated with the movies, but depending also
on the user’s ratings for those movies. Although de-
rived independently, we note that Paterek (2007) pro-
posed a related model, except that in Paterek’s model,
the movie functions which determine the user weights
[corresponding to our Wi,j (k) here] do not depend
on k, that is, on the user’s ratings. Our model is there-
fore more general, but having more parameters requires
different penalization. See also the section on asym-
metric factors in Bell, Koren and Volinsky (2007b).

Modeling Users via Movie Parameters

Parsimony of parameterization is a critical issue. Be-
cause users are 27 times more numerous than movies,
assigning model parameters to users exacts a far
greater price, in degrees of freedom, than assigning
parameters to movies. This suggests that parameteri-
zation be arranged in such a way that its dimension is
a multiple of the number of movies rather than of the
number of users; we thus try to model user features
in terms of parameters associated with movies. In the
context of the Neflix contest, Paterek (2007) was the
first to have publicly suggested this.

However, users cannot be regarded as being alike
merely for having seen the identical set of movies;
their ratings for those movies must also be taken into
account. Such considerations lead to three immediate
possibilities:
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(A) There is one feature vector, vj , associated with
each movie. The feature, ui , for the ith user is modeled
as a sum (variously weighted) of functions of the vj for
the movies he or she has seen, and the ratings he or she
assigned to them.

(B) There are two feature vectors, vj and ṽj , associ-
ated with each movie, and ui is based on the ṽj for the
movies i has seen, together with the ratings assigned to
them.

(C) There are six feature vectors, vj and ṽk
j ≡ ṽj (k),

for k = 1,2, . . . ,K (with K = 5) associated with each
movie, and ui is based on the ṽk

j for the movies i has
seen, and the ratings k assigned to them.

(There are possibilities beyond just these three.)
These considerations lead to models such as

r̂i,j = μ + αi + βj + u′
ivj ,

where the vj are free p-dimensional movie parame-
ters, while the ui are defined in terms of other (p-
dimensional) movie parameters. For the approaches
(A), (B) and (C) mentioned above, typical possibilities
include

ui = γ × ∑
j ′∈J (i)

(ri,j ′ − ri,·)vj ′,

ui = γ × ∑
j ′∈J (i)

ri,j ′ ṽj ′ and

ui = γ × ∑
j ′∈J (i)

ṽj ′(ri,j ),

respectively, where the γ ’s are normalizing factors. In
case (C), for example, the overall model would become

r̂i,j = μ + αi + βj

(10.11)

+ γ ×
p∑

�=1

∑
j ′∈J (i)

ṽj ′,�(ri,j ′)vj,�.

Note that (10.11) is essentially the same as the RBM-
inspired model (10.10), but alternately arrived at. Here
the weights γ might take the form |J (i)|−δ , with typ-
ical possibilities for δ being 0, 1/2 or 1, or as deter-
mined by cross-validation.

11. FURTHER IDEAS AND METHODS

Whether driven by fortune or by fame, the tenacity
of the contestants in the Netflix challenge has not often
been surpassed. In this section we collect together a
few ideas which have not yet been discussed elsewhere
in this paper. A very few of these are our own (or at

least were obtained independently), but the boundaries
between those and the many other methods that have
been proposed are necessarily blurred.

We start by noting that covariates can be included
with many procedures, as in

r̂i,j = μ + αi(t) + βj (t)

+
p∑

�=1

ui,�vj,� +
M∑

m=1

cmXm
i,j + · · · ,

where the Xm
i,j for m = 1,2, . . . ,M are covariates.

Such models can generally be fit using gradient de-
scent, and since regularization is typically used as well,
it would control automatically for collinearities among
covariates. Covariates introduce very few additional
parameters; hence, as a general rule (for this data), the
more the better. A covariate will typically differ across
both users and movies, unless it is viewed as being ex-
planatory to the “row” or “column” effects. There are
many possibilities for covariates. (See, e.g., Toscher
and Jahrer, 2008). A selection of these include the fol-
lowing:

1. User and movie supports Ji , Ij and various func-
tions (singly and jointly) of these.

2. Time between movie’s release date and date rating
was made.

3. The number and/or proportion of movies user i has
rated before and/or after rating movie j ; the number
and/or proportion of users who have rated movie j

before and/or after user i has rated it; and functions
of these.

4. The relative density of movie ratings by the user
around the time the rating was made; also, the
movie’s density of being rated around the time of
rating.

5. Seasonal and day-of-week-effects.
6. Standard deviations and variances of the user’s rat-

ings and of the user’s residuals. Same for movies.
7. Measures of “surge of interest” to detect “runaway

movies.”
8. The first few factors or principal components of the

covariance matrix for the movie ratings.
9. Relationship between how frequently rated ver-

sus how highly rated the movie is, for example,
(log Ij − Avg) × βj .

We next remark that although they are the easiest to
treat numerically, neither the imposed RMSE criterion,
nor the widely used quadratic penalties, are sacrosanct
for collaborative filtering. A mean absolute error cri-
terion, for instance, penalizes large prediction errors
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less harshly or, equivalently, rewards correct estimates
more generously, and penalties based on L1 regulariza-
tion, as in the lasso (Tibshirani, 1996), produce mod-
els with fewer nonzero parameters. Although the lasso
is geared more to model identification and parsimony
than to optimal prediction, the additional regularization
it offers can be useful in models with large parameter-
ization. Other departures from RMSE are also of in-
terest. For example, if we focus on estimating proba-
bility distributions for the ratings, a question of inter-
est is: With what probability can we predict a rating
value exactly? An objective function could be based on
trying to predict the highest proportion of ratings ex-
actly correctly. A yet different approach can be based
on viewing the problem as one of ranking, as in Co-
hen, Schapire and Singer (1999). See also Popescul et
al. (2001).

A natural question is whether or not it helps to shrink
estimated ratings toward nearby integers. Takacs et al.
(2007) considered this question from an RMSE view-
point and argued that the answer is no. One can sim-
ilarly ask whether it helps to shrink estimated ratings
toward corresponding modes of estimated probability
distributions; we would expect there too the answer to
be negative.

Collaborative filtering contexts typically harbor sub-
stantial implicit information. In many contexts, a user’s
search history or even mouse-clicks can be useful. As
mentioned several times previously, for Netflix, which
movies a user rated carries information additional to
the actual ratings. Here 99% of the data is “miss-
ing,” but not “missing at random” (MAR). Marlin et
al. (2007) discuss the impact of the MAR assumption
for such data. Paterek (2007) introduced modified SVD
models (called NSVD) of the type

r̂i,j = μ + αi + βj + v′
j

(
ui + |Ji |−1/2

∑
j ′∈J (i)

yj ′
)
,

where the yj are secondary movie features intended to
model the implicit choices a user has made. The Net-
flix qualifying data set, for example, contains important
information by identifying many cases of movies that
users had rated, even though those rating values were
not revealed. Corresponding to such information is an
I × J matrix which can be thought of as consisting of
0’s and 1’s, indicating which user-movie pairs had been
rated regardless of whether or not the actual ratings are
known. This matrix is full, not sparse, and contains in-
valuable information. All leading contestants reported
that including such implicit information in their ensem-
bles and procedures made a vital difference. Hu, Koren

and Volinsky (2008) treat the issue of implicit informa-
tion in greater detail. See also Oard et al. (1998).

Measures of similarity based on correlation-like
quantities were discussed in Section 7. Alternate sim-
ilarity measures can be constructed by defining dis-
tances between the feature vectors of SVD fits. Implicit
versions of similarity may also be useful. For exam-
ple, the proportion of users who have seen movie j is
|I (j)|/I , and who have seen movie j ′ is |I (j ′)|/I . Un-
der independence, the proportion who have seen both
movies should be about |I (j)||I (j ′)|/I 2, but is actu-
ally |I (j, j ′)|/I . Significant differences between these
two proportions is indicative of movies that appeal to
rather different audiences.

Among the most general models which have been
suggested, Koren (2008) proposed combining the SVD
and kNN methodologies while allowing for implicit in-
formation within each component, leading to models
such as

r̂i,j = μ + αi + βj + v′
j

(
ui + |J (i)|−1/2

∑
j∈J (i)

yj

)

+ |Nk(j ; i)|−1/2
∑

j ′∈Nk(j ;i)
(ri,j ′ − bi.j ′)Wj,j ′

+ |Rk(j ; i)|−1/2
∑

j ′∈Rk(j ;i)
Cj,j ′,

where the bi.j ′ are a baseline fit. Here the sum involv-
ing the yj makes the v′

jui SVD component “implicit

information aware.” The sets Nk(j ; i) and Rk(j ; i)
represent neighborhoods based on the explicit and im-
plicit information, respectively, while the last sum is
the implicit neighborhood based kNN term. This model
is among the best that have been devised for the Netflix
problem.

12. IN PURSUIT OF EPSILON:
ENSEMBLE METHODS

Meeting the 10% RMSE reduction requirement of
the Netflix contest proved to be impossible using any
single statistical procedure, or even by combining only
a small number of procedures. BellKor’s 2007 Progress
Prize submission, for instance, involved linear com-
binations of 107 different prediction methods. These
were based on variations on themes, refitting with dif-
ferent tuning parameters, and different methods of reg-
ularization (quadratic, lasso and flexible normal pri-
ors). BellKor applied such variations to both movie
and user oriented versions of kNN, both multinomial
and Gaussian versions of RBM, as well as to various
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versions of SVD. Residuals from global and other fits
were used, as were covariates as well as time effects.
The 2008 Progress Prize submission involved more of
the same, blending over 100 different fitting methods,
and, in particular, modeling time effects in deeper de-
tail; the individual models were all fit using gradient
descent algorithms. Finally, the Grand Prize winning
submission was based on a complex blending of no
fewer than 800 models.

Several considerations underpin the logic of com-
bining models. First, different methods pick up sub-
tly different aspects of the data so the nature of er-
rors made by different models differ; combining there-
fore improves predictions. Second, prediction methods
fare differently across various strata of the data, and
user behavior across such strata differs as well. For
instance, users who rated thousands of movies differ
from those who only rated only a few. If regularized
(e.g., ridge) regression is used to combine estimators,
the data can be partitioned according (say) to support
(i.e., based on the Ji and/or Ij ), and separate regres-
sions fit in each set, with the ridge parameters selected
using cross-validation. A third consideration is related
to the absence of any unique way to approach esti-
mation and prediction in complex highly parameter-
ized models. In the machine learning literature, ways
of combining predictions from many versions of many
methods are referred to as ensemble methods and are
known to be highly effective. (See, e.g., Chapter 16
of Hastie, Tibshirani and Friedman, 2009.) In fact, the
Netflix problem provides a striking and quintessential
demonstration of this phenomenon.

Various methods for blending (combining) models
were used to significantly improve prediction perfor-
mance in the Netflix contest and are described in
Toscher and Jahrer (2008), Toscher, Jahrer and Bell
(2009) and Toscher, Jahrer and Logenstein (2010).
These include kernel ridge regression blending, kNN
blending, bagged gradient boosted decision trees and
neural net blending. Modeling the residuals from other
models provided useful inputs, for example, applying
kNN on RBM residuals. It was found that linear blend-
ing could be significantly outperformed and that neu-
ral net blending combined with bagging was among
the more accurate of the proposed methods. Essen-
tially, individual models were fit on the training data
while blending was done on the probe set, as it rep-
resented the distribution of user/movie ratings to be
optimized over. In their winning submission, Toscher,
Jahrer and Bell (2009) noted that optimizing the RMSE
of individual predictors is not optimal when only the

RMSE of the ensemble counts; they implemented se-
quential fitting-while-blending procedures as well as
ensembles-of-blends. Further details may be found in
the cited papers. Some general discussion of ensemble
methods is given in Hastie et al. (2009), Chapter 16.
See also DeCoste (2006), and Toscher, Jahrer and Leg-
enstein (2010).

It should be noted that although the Netflix con-
test required combining very large numbers of predic-
tion methods, good collaborative filtering procedures
do not. In fact, predictions of good quality can usu-
ally be obtained by combining a small number of judi-
ciously chosen methods.

13. NUMERICAL ISSUES

The scale of the Netflix data demands attention to
numerical issues and limits the range of algorithms
that can be implemented; we make a few remarks con-
cerning our computations. We used a PC with 8 GB
of RAM, driven by a 3 GH, four-core, “Intel Core 2
Extreme X9650” processor. Our computations were
mainly carried out using compiled C++ code called
within a 64 bit version of MatLab running on a 64 bit
Windows machine.

For speed of computation, storing all data in RAM
was critical. Briefly, we did this by vectorizing the
data in two ways: In the first, ratings were sorted by
user and then by movie within user; and in the second,
conversely. A separate vector carried the ratings dates.
Two other vectors carried identifiers for the users and
for the movies; those vectors were shortened consid-
erably by only keeping track of the indices at which a
new user or a new movie began. Ratings were stored
as “single” (4 bytes per data point, so 400 MB for all
ratings) and user number as “Int32” (long integer, us-
ing 400 MB). As not all variables are required by any
particular algorithm, and dates often were not needed
in our work, we could often compress all required data
into less than 1 GB of RAM. Takacs et al. (2007) also
discuss methods to avoid swapping data across ROM.

Except for the RBM, we implemented many of the
methods discussed in this paper, as well as many oth-
ers proposed in the literature. In general, we found
that gradient descent methods (stopping when RMSE
on the probe set is minimized) worked effectively. For
SVD, for example, one full pass through the training
data using our setup took approximately 3 seconds;
thus, fitting a regularized SVD of rank 40 (which re-
quired approximately 4000–6000 passes through) took
approximately 4–6 hours.
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14. CONCLUDING REMARKS

The Netflix challenge was unusual for the breadth
of the statistical problems it raised and illustrated, and
for how closely those problems lie at the frontiers of
recent research. Few data sets are available, of such di-
mensions, that allow both theoretical ideas and applied
methods to be developed and tested to quite this ex-
tent. This data set is also noteworthy for its potential
to draw together such diverse research communities. It
is to be hoped that similar contributions could be made
by other such contests in the future.

In this paper, we discussed many key ideas that have
been proposed by a large number of individuals and
teams, and tried to contribute a few ideas and insights
of our own. To provoke by trivializing, let us propose
that there is one undercurrent which underlies most of
what we have discussed. Thus, ANOVA/baseline val-
ues can all be produced by the features of an SVD.
Likewise, fits from an SVD can be used to define kNN
neighborhoods. And finally, the internal structure of
an RBM is, in essence, analogous to a kind of SVD.
Hence, if there a single undercurrent, it surely is the
SVD; that, plus covariates, plus a variety of other ef-
fects. What complicates this picture are the dimensions
of the problem and of its parameterization, together
with the ensuing requirements for regularization, and
the difficulties (particularly the inaccuracies) of the es-
timation.

For the Netflix problem, an interesting question to
speculate on is: What is the absolutely best attain-
able RMSE? At one time, the 10% improvement bar-
rier seemed insurmountable. But the algorithms of the
winning and runner up teams ultimately tied to pro-
duce a 10.06% improvement (Test RMSE 0.8567) over
the contest’s baseline. When the prediction methods of
these two top teams is combined using a 50/50 blend,
the resulting improvement is 10.19% (Test RMSE
0.8555); see http://www.the-ensemble.com.

The Netflix challenge also raises new questions.
Some of these have already been under active research
in recent years, while others pose new questions of
problems that had been thought of as having been un-
derstood. For example, in the context of data sets of
this size, how can one deal most effectively with op-
timization under nonconvexity, as occurs, for instance,
in very sparse SVD? Can better algorithms be devised
for fitting RBM models, for having them converge to
global optima, and for deciding on early stopping for
regularization purposes? Furthermore, currently avail-
able theoretical results for determining optimal cross-
validation parameters are based on contexts in which

the distributions of the training data and of the cases for
which predictions are required are the same. Can these
theoretical results be effectively extended to cover
cases in which the training and test sets are not iden-
tically distributed? The Netflix problem also highlights
the value of further work to gain still deeper under-
standing of issues and methods surrounding penaliza-
tion, shrinkage and regularization, general questions
about bagging, boosting and ensemble methods, as
well as of the trade-offs between model complexity
and prediction accuracy. Related to this are questions
about choosing effective priors in empirical Bayes con-
texts (particularly if the number of parameters is po-
tentially infinite), and of the consequences of choosing
them suboptimally. What, for example, are the trade-
offs between using a regularized model having a very
large number of parameters, as compared to using a
model having still more parameters but stronger reg-
ularization? For instance, if two SVD models are fit
using different numbers of features, but with penaliza-
tion arranged so that the effective number of degrees
of freedom of both models is the same, can one deal
theoretically with questions concerning which model
is better? And finally, can general guidelines be devel-
oped, with respect to producing effective ensembles of
predictors, which apply to modeling of large data sets
requiring extensive parameterization? Such questions
are among the legacies of the challenge unleashed by
the Netflix contest.
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