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Abstract. The fractal index (Y and fractal dimension D of a Gaussian process are 
characteristics that describe the smoothness of the process. In principle, smoother 
processes have fewer crossings of a given level, and so level crossings might be 
employed to estimate (Y or D. However, the number of crossings of a level by a 
non-differentiable Gaussian process is either zero or infinity, with probability one, so 
that level crossings are not directly usable. Crossing counts may be rendered finite by 
smoothing the process. Therefore, we consider estimators that are based on compar- 
ing the sizes of the average numbers of crossings for a small, bounded number of 
different values of the smoothing bandwidth. The averaging here is over values of the 
level. Strikingly, we show that such estimators are consistent, as the size of the 
smoothing bandwidths shrinks to zero, if and only if the weight function in the 
definition of ‘average’ is constant. In this important case we derive the asymptotic 
bias and variance of the estimators, assuming only a non-parametric description of 
covariance, and describe the estimators’ numerical properties. We also introduce a 
novel approach to generating Gaussian process data on a very fine grid. 

Keywords. Bias; count; fractal dimension; fractal index; Gaussian process; level 
crossing; smoothing; upcrossing; variance. 

1. INTRODUCTION 

The smoothness of a stationary Gaussian process may be characterized by the 
behaviour of its variogram in the neighbourhood of the origin. Roughly 
speaking, if the variogram at points distant t apart converges to zero like ItJa 
as t + 0 ,  then the process has a/2 derivatives, measured in terms of 
Lipschitz-like behaviour. The value of a is sometimes termed the fractal 
index of the process, and indeed the fractal dimension D of sample paths is 
equal to 2 - a/2 (see, for example, Adler, 1981, Chapter 8). Thus, the 
parameter a is of intrinsic interest and importance. It has been used 
extensively as an index of roughness; see Berry and Hannay (1978), Coster 
and Chermant (1983), Dubuc et al .  (1989), Mandelbrot et al. (1984), Thomas 
and Thomas (1988), Taylor and Taylor (1991) and the references therein. In 
the present paper we consider the problem of estimating a by counting the 
level crossings of Gaussian processes. 

The value of a can never exceed 2, and should a be less than 2 then the 
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process can be taken to be continuous but not differentiable (see, for 
example, Leadbetter et a l . ,  1983, and Yaglom, 1987). In this instance the 
number of times that the process crosses any given level, over a specified 
interval, is either zero or infinity. Thus, counts of crossings for the original 
process are not meaningful. However, this problem disappears if we smooth 
the process by forming a suitable moving average or convolution over a 
narrow window, of width proportional to h say. The smoothed process is then 
differentiable, and the number of crossings is finite with probability one. If 
we were to specify the level in advance then we might be unlucky and select a 
level which the process did not cross. Thus, we might look instead at the 
average number of crossings of a large number of levels, the average being 
with respect to a weight function w ,  which may be almost arbitrary. We show 
that, strikingly, the case where the weight function is constant has special and 
important properties. This is the only case where a can be estimated 
consistently by examining the average number of level crossings for a finite 
number - as few as 2 - of bandwidths h.  

Having derived this result we focus attention on the case of the constant w. 
Here it transpires that the average number of crossings of the smoothed 
process over an interval is proportional to the total variation of the process on 
that interval. We propose an estimation procedure based on (log-log) 
regression of average number of crossings versus bandwidth. We also com- 
pute the asymptotic bias and variance of our estimator of a~, as h + 0, and 
thereby derive the rate of convergence. (It should be stressed that we are 
considering this problem in a non-parametric setting - see Equation (1.1) 
below - rather than a parametric context. Thus, convergence rates are 
particularly interesting.) Finally we present a simulation study which confirms 
our theoretical analysis. That work describes a novel way of generating 
Gaussian processes on a very fine grid, with predetermined values of a. 

There is no loss of generality in assuming that the underlying stationary 
Gaussian process X = X ( t )  has zero mean and unit variance. We shall 
suppose in addition that the variogram Y( t )  = E ( X ( 0 )  - X(t)} '  satisfies 
v(t) - 2cltla as t + 0, where c > 0. Equivalently, the covariance function 
y ( t )  = E ( X ( O ) X ( t ) }  has the property 

y ( t )  = 1 - C ( t ( @  + o(( t (" )  (1.1) 
as t + 0. We suppose that y has two derivatives on (0, m), bounded on 
( E ,  m) ,  for E > 0, and mimicking property (1.1) near the origin: 

y " ( t )  = -&(a - 1)cJt1a-2 + o(ltla-2) (1.2) 
as t + O .  

Our theoretical development of this problem is confined to the case where 
the process is observed over only a fixed interval, which we take without loss 
of generality to be (0,l) .  In particular, our asymptotic theory does not rely 
on the length T ,  say, of the recording interval diverging to infinity. Rather, 
the size h of the smoothing parameter tends to zero. We could have 
developed a theoretical account for the case of increasingly large T ,  but that 
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would have distracted attention from the very important fact that consistant 
estimation of a is possible using only a very small trace of the process X .  

In practice, X would usually not be recorded in the continuum, but at a 
sequence of discrete lattice points. Often the recording device itself imposes a 
degree of smoothing on the data, through some sort of inbuilt filter. Practical 
choice of the bandwidth h is determined by the level of gridding or filtering 
of the raw data, which ideally should be an order of magnitude less than the 
value of h .  

For processes other than Gaussian ones the classical relationship D = 
2 - m/2 between fractal dimension and fractal index does not necessarily hold. 
In particular, if X = IZI” and 2 is a stationary Gaussian process then the 
relationship is valid if and only if u 2 1/2. See Hall and Roy (1994) for 
further discussion. Variants of our results may be derived for classes of 
non-Gaussian processes by taking them to be functions of Gaussian ones. 
However, the proofs lack the elegance and simplicity of those given here. 

2. DEFINITION OF ESTIMATOR, AND BASIC PROPERTIES 

Let X denote a stationary Gaussian process whose covariance function y 
satisfies (1.1). Then the number of crossings of any level by the process 
X ,  over any finite interval, has infinite mean. See, for example, Leadbetter 
et al.  (1983, p. 216 ff). To render the number of crossings finite we might 
smooth X using a moving average or linear filter, generating a new process Y 
given by 

Here, h > 0 denotes bandwidth, and we require that the kernel K be 
differentiable, be compactly supported and satisfy !(I KI + I K’I)  du < to, 
!Kdu  = 1 and / u K ( u )  du = 0. By letting h + 0 we recover the process X :  

limY(t) = X ( t )  -a < t < 03 
h-0 

with probability one. Although the sample paths of the original process X are 
not differentiable, those of Y are, and in fact 

0 < A. = E { Y r ( 0 ) } 2  = - I I K ( u I ) K ( u 2 ) Y . { h ( u I  - u 2 ) }  dul duz < to; (2.1) 

see the Appendix. Therefore, by Rice’s formula (see Theorem 7.3.2 of 
Leadbetter et a[.),  we have that the random function 

N ( u )  = # { t  E (0 , l ) :  Y ( t )  = u }  --cQ < u < 03 

is well defined and finite with probability one. We shall base our estimator of 
a on the behaviour of this quantity as h + 0. Almost identical results may be 
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proved for upcrossings or downcrossings, rather than the crossings considered 
here. 

Of course, N ( u )  = 0 if ( u I  is too large, and so working with N ( u )  alone 
could result in vacuous conclusions. We therefore suggest calculating a 
version of N that is 'averaged', in a sense, over all possible u's. To this end, 
let w 0 denote a weight function satisfying 

W ( U )  G D1(1 + 1 ~ 1 ) ~ ~  --OO < u < co 
for arbitrary constants Dl, D2 > 0. This growth condition ensures that 

M = N(u)w(u)du  (2.2) I 
is well defined and finite with probability one, and in fact has all moments 
finite. (Unqualified integrals are over ( - 0 3 ,  m).) It may also be shown that 

1 
M = [ l Y f ( t ) l w { Y ( t ) }  dt 

Jo 
and from this formula one may prove that, as h + 0, 

E ( M )  - A'Ww{X(O)}IEI zol (2.4) 
where Zo denotes a standard normal random variable and A is as in (2.1). 
Proofs of these three assertions will be given later in this section. It may 
further be proved from (1.2) and (2.1), on integrating by parts, that as h -+ 0 

A - Clh"-2 
where 

c1 = c K ' ( U ' ) K ' ( U 2 ) I U 1  - U 2 1 " d U 1 d U *  II 
and c, a: are as in (1.1). Therefore, 

E(  M) - C2h'"-2'/2 (2.6) 
where C2 = C:'2E[w{X(0)}]EIZ,I .  

Formula (2.6) offers the possibility of estimating 0(/2 - 1, and hence cx and 
D = 2 - a/2, from the slope of a linear regression of log { E(  M ) }  on log h for 
small h .  Since E ( M )  is not known we shall have to replace it by M in any 
practical estimator. For this approach to be feasible, i.e. consistent, using 
only a bounded number of different bandwidths, it is essential that the 
measure of variation 

as h + 0. We shall show shortly that this result holds if and only if w = const. 
Without loss of generality, w = 1. 

To confirm consistency of the estimator based on only a finite number of 
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bandwidths, note that by (2.7), and a Taylor expansion argument, 

log { M ( h ) }  = log { E M ( h ) }  + log { 1 + M (h;)--;; ( h’ } 
= log{EM(h)} + op(l) 

and in view of (2.6), 

log { E M ( h ) }  = ;(a - 2) log h + log C2 + ~ ( l ) .  

Therefore 

log{M(h)} = ;(a - 2)logh + logC2 + oP(l). 

Hence for each fixed k > 1, the regression estimator defined by 

where xi = log hi and X = k-’Cxj, is consistent for a provided only that h l ,  
. . ., hk + 0 and c ( x j  - X)’ or, equivalently, llog hi - log h,l, is bounded 
away from zero. Here, consistency means that for some E > 0 and any q > 0, 

lim 
h ] , .  . . ,hr--O,CCllogh,-logh,I>E 

P(l& - a( > q)  + 0. 

When w = 1 we see from (2.3) that 

M = M ( h )  = ] [ Y ’ ( t ) l d t  

representing the total variation of the process Y over the interval (0,l) .  We 
were initially surprised, as might be the reader, that the crucial condition 
(2.7) holds only if w is constant. It is instructive to consider first an intuitive 
explanation for this result. The starting point is formula (2.3), which integral 
we might approximate by a series as follows: 

M = n-’E[ Y ’ ( + ) [  w {  Y ( $ ) }  

Now, the Gaussian random variables Y ’ ( t ) ,  0 < t < 1, are asymptotically 
independent as h + 0, since for any fixed t l  # t2  the correlation 

-Y”(t1 - t 2 )  + corrln { Y ’( tl), Y ’( t 2 ) }  - 
il 

as h+0,  by (2.5). Therefore, if w is constant then the series at (2.9) is 
approximately an average of independent random variables, from which it is 
to be expected by the law of large numbers that (2.7) will hold. However, 
should w not be constant, then since 

corrln{Y(t1)9 Y(t2)) + Y(t1 - t 2 )  
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as h + 0 ,  the approximate independence of the summands in (2.9) is no 
longer valid, and in fact (2.7) will fail. 

We close this section by sketching proofs of the following: all moments of 
M are finite, (2.3) and (2.4) hold and w = const is necessary and sufficient 
for (2.7). To show that M has finite moments, we shall first assume the 
equivalence of (2.2) and (2.3) and work with the latter. Given pathwise 
continuity of Y(t) and Y’(t) (see (Al) in the Appendix) we have, from (2.3), 

under the growth condition for w .  The finiteness of EIM(‘ for each r > 0 
now follows from the Cauchy-Schwarz inequality, and the fact that the 
random variables S U ~ , , [ ~ , ~ ~  IY(t)l and S U ~ , , [ ~ , ~ ~  I Y’(t)l have lighter-than- 
exponential tails (see Section 12.2 of Leadbette et a l . ,  1983). Note that the 
existence of the first two moments of M is required in (2.7). 

An heuristic proof of (2.3) runs as follows. Observe that 

whence 

M = N ( u ) w ( u ) d u  I 

1 

= ~-Y’(l)l~{Y(t)} dt.  

A rigorous proof is longer but similar. 
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Formula (2.3) implies that 

var M = l/olcov ( U1, U2) dt 1 dt2 

where U ( t )  = w{Y(t)}lY'(t)l  and Q = U(ti). (This result may also be 
derived directly from (2.2) using the arguments of CramCr and Leadbetter 
(1967, p. 202 ff).) To check our claim that condition (2.7) is equivalent to 
w = const, put A = var { Y ' ( t ) }  and Z(t)  = A-1/2Y'(t) and observe that 

where 

a(ti, t 2 )  = cov[W{Y(fi)}lZ(ti)/7 W{Y(f2)}lZ(t2)11. 

As h + 0, and for tl # t 2 ,  the bivariate joint limiting distribution of I Z(tl)l 
and 12(t2)l conditional on Y ( t , )  and Y(t2) is that of lZ1) and lZ21, where Z1 
and Z 2  are independent standard normal random variables. Arguing thus, 
rigorously from the formula for the Gaussian joint density of Y ( t l ) ,  Y ( t 2 ) ,  
Z ( t l )  and Z( t , ) ,  we may prove that for each fixed t l  f t 2 ,  

as h + 0. In fact, for any t l  and t2, 
4 t 1 ,  l 2 )  + cov [w{X(td>, w{Wt2)>l(El Zo1>2 

l a ,  t2)l E"70)}2z(0)21 
< ( E [  w { Y (0)}4] E { z (0)}4)1/2 

+ ( ~ [ w  {X(O))~I E( ~ 4 , ) ) ~ ~  

as h + 0. Therefore, by the dominated convergence theorem, 

A-lvar M + /o~01cov[w{X(tl)}7 w{X(t2)}]dt1 dt2(E1201)2 

= var [ j-oL{x(t)} dt](El  zo1)2. 

Next, using (2.3), observe that 

(2.10) 

(2.11) 
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The right-hand side equals zero if and only if w is constant almost every- 
where! 

3 .  BIAS AND VARIANCE OF THE ESTIMATOR 

Define & as in (2 .8) ,  with k fixed and bandwidths h l ,  . . ., hk converging to 

denote fixed positive constants, and h 4 0. In this instance the quantities 
zero. For the sake of definiteness we shall take hi = ujh, where a l ,  . . ., uk 

y. I 1  = X. - X = log U, - k-’C log ~i 

do not depend on h ,  and this simplifies notation. As suggested in ? -‘.ion 2 ,  
we take w = 1 when defining M ,  so that M = M ( h )  = I N .  Thus, 

To elucidate the first-order asymptotic behaviour of this estimator, put 
m(h) = E M ( h )  and Taylor-expand in (3.1), obtaining 

8 = A + B + 0,[m(h)-2var{M(h)}] (3 .2 )  
where 

denotes the primary contribution to the error about the mean of 8, and 
I k 1--1 k 

B = 2 + 2 c y j  -~yj log{m(ajh)} 
t j = l  ‘1 j = 1  

is the main contribution to the mean. Note that E ( A )  = 0 and that B is 
non-random. 

To describe the variance of A ,  and hence that of 8, define 

L = L(h)  = j q l / K ’ ( u l ) K ’ ( u , ) / t  + u1 - u2(adU’du2 
0 

for 0 < a < 3/2 (for a in this range, L < m), put 

h2(2--(Y) if a > 312 

if a < 312 
log h-l if a = 312 

and 

(3/  Cl)2/i(1 - t ) { ~ ” ( t ) } ~ d t  if a > 3/2 
if a = 3/2 
if a < 3/2 
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where C1 is as in (2.5). In this notation it may be proved that 

rn(h>-'var{M(h)} - CH (3.3) 

var(A) - A H .  (3.4) 

as h + 0, and similarly, for a constant A = A ( a l ,  . . ., ak) ,  that 

We shall shortly derive formula (3.3). The extension to (3.4) may be 
established by a notationally more tedious, but mechanically very similar, 
argument. We shall also prove that if condition (1.1) is specialized to 

y ( t )  = 1 - cltla - dltlP + o(ltlP) (3.5) 
where p, (Y are constants and (Y < /3 < m, then 

log{rn(h)} = -log (':') - + :(a - 2)logh + C;'C3hP-" + o(hP-") (3.6) 
2 

where 

It follows that 

B = (Y + C,hs-" + o(hP-") (3.7) 
where 

c, = 2c;1c3($-1~u;- f f .  
j=l  

Combining (3.2), (3.4) and (3.7) we may deduce that 

& - (Y = C,hP-@ + A1/zH'/zV + o,(hP-" + H1i2) 

where the random variable V has unit variance. Thus, & is consistent for a: 
with asymptotic bias of size hP-O and variance of size H .  The error of & 
about its mean will thus converge to zero more slowly when (Y approaches 2. 
This is a common feature of estimators of fractal dimension; see, for 
example, Constantine and Hall (1994) and Hall and Wood (1993). 

We close by proving (3.3) and (3.6). Let V1, Vz have a bivariate normal 
distribution with zero mean, unit variance and correlation coefficient p. Then 
as p+ 0, 

cov(lvlI, I V , ~ )  = 9x-1p2 + o(p4). (3.8) 
Let r denote the covariance function of the process Y ,  and put 

A = E {  Y'(O)'} = -r"(O). It is shown in (A5) of the Appendix that 

COV{Y'(O), Y'(t)} = - r " ( t )  = - K(u,)K(u,)y"{t + h(u, - U 2 ) } d U 1 d U z .  II 
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In this notation, and in view of (3.8), 

Now when 3/2 < a < 2, 

J = (I  - t ) { r r r ( t ) } 2 d t  I,’ 

K’(u1)K’(uz){y( t )  + h(u1 - uz)y’(t) 

I ] ’  1 
2 

+ -h2(u1 - ~ 2 ) ~ y ” ( t )  duldu2 dt 

1 
= 1,(1 - t)y”(t)2dt. 

In the case 0 < a s 3/2, let 0 < 6 s 1 and write 

(3.10) 

J = jd’hh-3(l - h t ) [ ~ / K ’ ( u , ) K ’ ( u , ) y { h ( t  + u1 - uz ) }  dul du2 I dt 

= $“ + ldYhh 
= J16 + Jzs (3.11) 

say. Given any E >  0 we may choose 6 > 0  so small that for all sufficiently 
small h ,  and some 6 = 6(h )  E ( - E ,  E ) ,  we have 

k q l l K ‘ ( u ~ ) K ’ ( u 2 ) 1 i  + u1 - uZla dul du2 

(3.12) 

j I B  = (1 + e)CZh2“ - 

Also, when 0 < a < 2, JZs = O(1). If a = 3/2, 
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9 
16 

- -log h-' 

and so 
9c2 
16 

J - -log h-' (3.13) 

If 0 < a < 3/2 then we may show from (3.11) and (3.12) that 
J - C2Lh2a-3. (3.14) 

Similar arguments may be used to approximate the integral in the second, 
remainder term in (3.9). Arguing thus it may be shown that the remainder 
term in (3.9) is of smaller order than the first term. Hence, combining (3.9), 
(3.10), (3.13) and (3.14), we obtain 

/i(l - t)y''(t)2dr 
(9c2/16) log h-' 

We know from (2.4) that EM - (2/3~)'/~A'/~, and so 

if a > 3/2 
if a = 312 
if a < 312 

var M - 18x-'A-' X 
C2~h2n-3 t 

h2(2-")li(l - t ) y f f ( t ) 2  if a > 3/2 
if a = 312 

( E M > 2  if a < 3/2 
- 9C: x [$:!6)h log h-' 

which proves (3.3). 
To establish (3.6), observe that since E ( M )  = A1/2(2/x)'/2 and 

A = -h-'// K'(U1)Kf(U2)Y{h(4 - u2)) du1 du2 

then under condition (3.5), 

{Clh"-' + C3h@-' + o(h~-2)}"2 

whence follows the desired result. 

4. THE SIMULATION METHOD 

Suppose that we wish to generate a random vector 
u = [X(O), x(;), * * x(+)] T 
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from a zero-mean, stationary Gaussian process { X (  t ) }  with given covariance 
function y. Then U - NJO, G), where 

Y(0) N l n )  . . .  
Y (0) . . .  

Y{(n  - l ) /n> Y{(n - 2)/nI . . . 

G = [  Y ( W  ~ 

One possibility is to base a simulation method on the Cholesky factoriza- 
tion of G, but in the present setting this has the disadvantage that storage 
requirements are O(n2).  An alternative method is described below. It is 
based on properties of circulant matrices and the fast fourier transform 
(FFT). See Brockwell and Davis (1987) for details of both. 

The simulation scheme may be outlined as follows. 

STEP 1. Embed G in a circulant covariance matrix C(m X m), where m = 2g 
for some integer g,  and m 3 2n. 

 STEP^. Use the FFT twice, as indicated below, to generate a random vector 
Y = (YO, Y1, . . ., Ym-l)T - N,(O, C). Then, with appropriate construction of 
C in Step 1, U = (Yo, Y l ,  . . ., Yn-l)T - N,(O, G). 

In Step 1, we take C to be the circulant matrix 

p0 c1 . . .  C??-1 

where 

Note that if m 3 2n, then the n x n submatrix in the top left-hand corner of 
C is equal to G in (4.1). 

Since C is a circulant matrix, we may use Proposition 4.5.1 of Brockwell 
and Davis (1987) and write C = QAQ*, where A = diag {A,,, Al,  . . ., A m - l }  is 
the diagonal matrix of eigenvalues of C, the Ak are given by (4.6) below, Q is 
the matrix whose columns consist of the (left) eigenvectors of C, and is given 
by 

Q = {q jk:  0 c j ,  k c m - l} where qjk = m-1’2exp 

and Q* is the conjugate transpose of Q. 
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It is easily established that if C is real and symmetric, then (i) A is real and 
(ii) if, in addition, 

QA1I2Q* is real and symmetric, where All2 = diag {Ail2,  A:i2, . . ., A?-’_,}. It 
follows that if 2 = (Zol  Z 1 , .  . ., 2m-l)T is a vector whose components are 
independent N(0,l) random variables, and (4.3) holds, then QA1I2Q*Z is a 
real random vector with an Nm(O, C )  distribution. 

To generate the complex normal random vector Q*Z directly, we generate 
independent N(0, 1) random variables Rot R 1 ,  y k ,  j = 1, 2 and k = 1, 2, . . ., 
m/2 - 1, and put 

A, 3 Ofor0 s j =s m - 1 (4.3) 

SO = Roy TO 0, Smb = R1, Tm/2 E 0, s k  = s m - k  = 2-’I2w1k, 
Tk = -Tm-k = 2-’”W2k, 1 S k C m/2 - 1. (4.4) 

Then, using the orthogonality properties of the relevant trigonometric func- 
tions, it is straightforward to establish that 

Q*Z = S + iT in distribution 

where S = (Sol S1, . . ., Sm-l)T and T = (TO, T1, . . ., Tm-l)T. 

numbers ao, a l l  . . ., am-, by 
Define the discrete Fourier transform of the sequence a of complex 

m-1 

d, (k)  = C ajexp (-?) ~ 

k = 0, 1 , .  . ., rn - 1. (4.5) 
,=0 

If m is of the form 2 g  for some integer g,  then (4.5) can be calculated very 
efficiently using the FIT algorithm. Using Proposition 4.5.1 of Brockwell and 
Davis (1987) again, it is seen that the eigenvalues of C are given by 

Ak = d,(k)  k = 0, 1, . . ., m - 1 (4.6) 
where the C-sequence Co, Cl, . . ., CmPl is defined as in (4.2). Also, 
assuming that (4.3) holds, note that QA1i2Q*Z is equal in distribution to 
m 1/2 Qa, where a = (ao, a l l .  . ., u , , - ~ ) ~  and 

Ai’2(S, + iT,) 
a. = j = 0, 1, . . ., m - 1 .  

1/2 I (4.7) 

Finally, observe that premultiplying the vector a by the matrix m’I2Q is 
precisely equivalent to calculating the discrete Fourier transform d, in (4.5). 

We may summarize Step 2 of the procedure as follows. First, apply the 
FFT to the C-sequence in (4.2) to obtain the A, in (4.6), generate the S, and 
T, according to (4.4), and then calculate the a, in (4.7). Second, apply the 
FFT to the a-sequence and put U = {d,(O), d,(l),. . ., d,(n - l)}T. Then 
U - N,(O, G). 

The only thing which can go wrong with the above procedure is that (4.3) is 
violated with the given m = 2 g ,  i.e. some of the A, are negative. We now give 
conditions which ensure that (4.3) is satisfied when m is sufficiently large. 
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PROPOSITION 4.1. Let 

f(o) = y(0) + 2 c y  - cos(2nhw) o E [0, 11 
h=l (:I 

denote the spectral density of the process { X ( t ) :  t = 0 ,  +n-', f 2 n - l , .  . .}. 
Suppose that f(o) is strictly positive on [0,1], and that the covariance 
function is absolutely summable, i.e. 

Then the matrix (4.2) is positive definite for all m sufficiently large. Note: 
f(o) is a wrapping of the spectral density of the process { X (  t): - 03 < t < w }. 

PROOF OF PROPOSITION 4.1. Suppose that f(o) has a minimum q > 0 on [0,1]. 
Absolute summability of the covariance function implies we can choose an mo 
such that 

h = c mi2 ly(;)/ $ 
when m 3 mO. Now the eigenvalues of C in (4.2) may be written 

when m is even; and when m is odd, 

Thus, for m 3 mo, 

where [.I denotes integer part; and therefore 

In Table I, minimum values of g are given for which (4.3) is satisfied with 
the covariance function given by 

r(t) = exp(-cltl") (4 * 8) 
and m = 28 3 2n. 
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TABLE I 
VALUES OF g REQUIRED FOR POS~TIVITY (SEE (4.3)) 

n 

100 250 500 lo00 5000 

cr s 1.0, all c 8 
c = 0.1, 1.25 < cr S 1.75 12 
c = 0.1, (Y = 1.99 12 
c = 1, cr = 1.25 9 
c = 1, cr = 1.5 9 
c = 1, 1.75 < (Y < 1.99 10 
c = 10, 1.25 < (Y 1.99 8 
c = 10, cr = 1.99 8 
c = 100. all 1.25 c (Y c 1.99 8 

9 10 
13 14 
13 14 
10 11 
11 12 
I1 12 
9 10 

10 11 
9 10 

11 
15 
15 
12 
13 
13 
11 
12 
11 

14 
18 
17 
15 
16 
16 
14 
14 
14 

Note: These results are for the covariance function given in (4.8). 

5. A SIMULATION STUDY 

We now describe the results of a simulation study. Random vectors 
X = [X(O),  X(l/n), . . ., X{(n - l)/n}]' were generated from the stationary 
Gaussian process with covariance function given by (4.8), for various values 
of n ,  a and c .  The values chosen were n = 500, 1O00, 5000; c = 0.1, 1, 10, 
100; and a = 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 1.99. All combinations were 
included except for the four given by n = 5000, c = 0.1 and a = 1.25, 1.5, 
1.75, 1.99. For each combination of n ,  a and c considered, 1000 random 
vectors X = [X(O), X(l/n), . . ., X { ( n  - l)/n}lT were generated using the 
simulation method described in Section 4; and for each X generated, eight 
versions of the regression estimator described in Section 2 were calculated, as 
indicated below. 

The kernel function K ( x )  given by 

was used throughout. The smoothing bandwidth h was chosen to be of the 
form h = r / n ,  for r = 5,  10, 20, 40 and 80. 

Once a value of the smoothing bandwidth h has been selected, M ( h )  may 
be calculated using either (2.2) or (2.3). In the simulation study described 
here, M was always calculated using (2.3), but in some contexts it may be 
more convenient to use (2.2), depending on the form in which the data is 
received. For given h = r / n  and X ,  we approximated Y' (u /n )  by 

u = 0 , 1 , .  . ., n - 1 

and then, using (2.3), M was approximated by 
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Note that (5.1) depends not only on X = [X(O) ,  . . ., X { ( n  - l)/n}lT, but 
also on X { - ( r  + l)/n}, . . ., X ( - l / n )  and X(1), X { ( n  + l)/n}, . . ., 
X { ( n  + r + l ) /n} .  Thus, a sequence of length a little longer than n was used, 
but for convenience we have taken n as the sample size index. Eight 
regression estimators were considered: the six 2-point regressions based on 

and the two 3-point regressions based on 

(5.3) 
In each case, 2 was estimated using (2.8), and then the fractal dimension was 
estimated by 6 = 2 - 2/2 .  

Whenever 6 was less than 1, it was reset to 1; and whenever fi was 
greater than 2, it was reset to 2. Counts were kept of the number of times 
that resetting was necessary. 

In Tables 11, I11 and IV, a selection of the results of the simulation study is 
presented. In Table 11, the eight regression estimators in (5.2) and (5.3) are 
compared when a = 1.5 and c = 1.0. These values of a and c give results 
which are fairly representative of the whole study. The main finding is that 

TABLE I1 
COMPARISON OF THE EIGHT REGRESSION ESTIMATORS OF FRACTAL DIMENSION D 

n = 500 n = 1000 n = 5000 

Bias SD MSB Bias SD MSE Bias SD MSE 

El 0.0071 0.0759 
El  0.0270 0.1152 
E3 0.0204 0.0933 
Ed 0.0175 0.1059 
ES 0.0571 0.1606 
E6 0.0439 0.1283 
E7 0.0213 0.0961 
E8 0.0458 0.1323 

0.0058 
0.0140 
0.0091 
0.0115 
0.0291 
0.0184 
0.0097 
0.0196 

0.0017 0.0583 0.0034 
0.0158 0.0829 0.0071 
0.0111 0.0695 0.0050 
0.0111 0.0771 0.0061 
0.0287 0.1148 0.0140 
0.0228 0.0937 0.0093 
0.0118 0.0712 0.0052 
0.0236 0.0964 0.0098 

-0.0084 0.0285 0.0009 
-0.0003 0.0433 0.0019 
-0.0030 0.0365 0.0013 
-0.0018 0.0397 0.0016 

0.0032 0.0578 0.0034 
0.0015 0.0487 0.0024 

-0.0026 0.0374 0.0014 
0.0018 0.0499 0.0025 

Note: The covariance function given in (4.8) was used with c = 1.0 and cy = 1.5.These results are 
for estimators of the quantity D = 2 - cy/2 = 1.25. 
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TABLE I11 
COMPARISON OF ESTIMATORS El AND E,: ROUGHER SAMPLE PATHS 

E ,  E7 

Bias SD MSE Bias SD MSE 
c = 1.0, (Y = 0.25 
n = 500 0.0954 
n = 1000 0.1018 
n = 5000 0.1130 

c = 1.0, (Y = 0.5 
n = 500 0.0523 
n = 1000 0.0538 
n = 5000 0.0396 

c = 1.0, (Y = 0.75 
n = 500 0.0257 
n = 1000 0.0175 
n = 5000 0.0105 

c = 1.0, (Y = 1.0 
n = 500 0.0161 
n = 1000 0.0072 
n = 5000 0.0010 

c = 10.0, cr = 0.5 
n = 500 0.2100 
n = lo00 0.1904 
n = 5000 0.1100 

c = 10.0, (Y = 0.75 
n = 500 0.1305 
n = lo00 0.0832 
n = 5000 0.0307 

c = 10.0, (Y = 1.0 
n = 500 0.0670 
n = 1000 0.0341 
n =5000 0.0065 

0.0522 
0.0384 
0.0190 

0.1014 
0.0736 
0.0332 

0.0981 
0.0679 
0.0303 

0.0918 
0.0651 
0.0285 

0.0605 
0.0581 
0.0339 

0.1020 
0.0703 
0.0306 

0.0936 
0.0663 
0.0288 

0.0118 (600) 
0.0118 (565) 
0.0131 (556) 

0.0130 (38) 
0.0083 (13) 
0.0027 

0.0103 (1) 
0.0049 
0.0010 

0.0087 
0.0043 
0.0008 

0.0478 (532) 
0.0396 (263) 
0.0132 

0.0274 (11) 
0.0119 
0.0019 

0.0133 
0.0056 
O.ooo9 

0.0771 
0.0814 
0.0809 

0.0577 
0.0458 
0.0273 

0.0444 
0.0181 
0.0085 

0.0281 
0.0129 
0.0031 

0.2390 
0.2212 
0.1259 

0.2195 
0.1342 
0.0456 

0.1466 
0.0739 
0.0166 

0.0631 
0.0490 
0.0301 

0.0958 
0.0714 
0.0336 

0.1071 
0.0734 
0.0333 

0.1001 
0.0740 
0.0332 

0.0293 
0.0412 
0.0340 

0.0981 
0.0726 
0.0334 

0.1002 
0.0756 
0.0334 

0.0099 (444) 
0.0090 (352) 
0.0075 (115) 

0.0125 (46) 
0.0072 (4) 
0.0019 

0.0135 (4) 
0.0057 
0.0012 

0.0108 
0.0056 
0.0011 

0.0580 (786) 
0.0506 (500) 
0.0170 

0.0578 (85) 
0.0233 (2) 
0.0032 

0.0315 (1) 
0.0112 
0.0014 

Notes: The covariance function given in (4.8) was used. These results are for estimators of the 
quantity D = 2 - a/2. The numbers in parentheses indicate the number of times, out of 1000, 
that the estimator was reset to 2. The results for c = 10.0 and (Y = 0.25 have been omitted 
because, in each case, resetting occurred 3 996 times. 

estimator El is clearly superior to the other estimators: in the great majority 
of cases, E l  had the smallest bias and smallest standard deviation of all the 
estimators. It is interesting to note that El is the estimator which involves the 
least smoothing, and also the estimator which estimates the derivative process 
Y' ( t )  least accurately. 

In Table 111, El is compared with E7 over smaller values of a, correspond- 
ing to rougher sample paths. The estimator E7 was chosen as it proved to be 
the better of the two 3-point estimators. The numbersin parentheses in Table 
I11 refer to the number of times, out of 1000, that D was reset to 2. Note 
that, in Table 111, the smaller the value of a, the larger the bias of both El 
and E7,  as predicted by (3.7). 
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TABLE IV 
COMPARISON OF ESTIMATORS E ,  AND E,: SMOOTHER SAMPLE PATHS 

El E7 

Bias SD MSE Bias SD MSE 

c = 1.0, (Y = 1.25 
n = 500 0.0082 
n = 1 0 0 0  -0.0003 
n = 5000 -0.0019 

c = 1.0, (Y = 1.5 
n = 500 0.0071 
n = 1000 0.0017 
n =5000 -0.0084 

c = 1.0, (Y = 1.75 
n = 500 0.0032 

0.0031 
n = 1000 -0.0019 

n =5OOO -0.0040 

c = 1.0, (Y = 1.99 
n = 500 0.0001 

-0.0060 
n = 1 0 0 0  0.0007 

- 0.0053 
n = 5 0 0 0  -0.0006 

-0.0065 

-0.0019 

0.0852 
0.0604 
0.0270 

0.0759 
0.0583 
0.0285 

0.0702 
0.0702 
0.0565 
0.0565 
0.0336 

0.0152 
0.0176 
0.0162 
0.0187 
0.0122 
0.0148 

0.0073 0.0252 
0.0036 0.0046 
0.0007 0.0028 

0.0058 0.0213 
0.0034 0.0118 
0.0009 - 0.0026 

0.0049 (2) 0.0184 
0.0049 0.0184 
0.0032 (1) 0.0098 
0.0032 0.0098 
0.0011 0.0044 

0.0002 (768) 0.0040 
0.0003 0.0030 
0.0003 (756) 0.0035 
0.0004 0.0021 
0.0001 (754) 0.0018 
0.0003 0.0003 

0.1024 
0.0735 
0.0317 

0.0961 
0.0712 
0.0374 

0.0853 
0.0853 
0.0700 
0.0700 
0.0405 

0.0198 
0.0203 
0.0198 
0.0205 
0.0151 
0.0158 

0.0111 
0.0054 
0.0010 

0.0097 
0.0052 
0.0014 

0.0076 (1) 
0.0076 
0.0050 
0.0050 
0.0017 

0.0004 (394) 
0.0004 
0.0004 (536) 
0.0004 
0.0002 (561) 
0.0003 

Notes: The covariance function given in (4.8) was used. These results are for estimators of the 
quantity D = 2 - m/2. The numbers in parentheses indicate the number of times, out of 1O00, 
that the estimator was reset to 1. The rows immediately below those with numbers in parentheses 
give the corresponding results without resetting. 

A rather surprising phenomenon is evident in Table IV: the standard 
deviations are small when a = 1.99, and there is an apparent discrepancy with 
the theoretical result (3.4). Three points are worth noting. 

(i) An independently conducted simulation study, not reported here, shows 
that the box-counting estimator (see Hall and Wood, 1993) and the variogram 
estimator (ee Constantine and Hall, 1994) exhibit a similar discrepancy. That 
is, when a is close to 2, standard deviations are surprisingly small. Thus, this 
phenomenon would appear not to be specific to the crossings estimators 
described here. 

(ii) While it is true that the standard deviations when a = 1.99 tend to be 
considerably smaller than the corresponding standard deviations when 
a < 1.99, there is an important respect in which there is clear agreement 
between Table IV and the theory: the rate of decrease, as n increases, of the 
standard deviation is substantially slower when a = 1.99 than when a < 1.99. 

(iii) The results of Table IV allow us to rule out the possibility that the 
discrepancy is due to the resetting procedure, even though in some cases 
resetting has a noticeable effect on bias and standard deviation. 
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Assuming that both the theory and numerical results are correct, which we 
believe to be the case, it seems reasonable to suggest that the discrepancy is 
due to constants and/or remainder terms playing unexpectedly influential 
rbles. However, further study of this phenomenon is required. 

APPENDIX 

We collect some relevant facts about the smoothed process Y(t) and the derivative 
process Y ‘ ( t )  which appear in Sections 2 and 3. The derivations are elementary once 
the following result is noted: a stationary Gaussian process with a covariance function 
which satisfies (1.1) has a version whose sample paths are continuous with probability 
1. In other words, there exists a version X ( t )  for which 

P { X ( t )  continuous at each t E (-m, (A)} = 1 (Al) 

(see Cramer and Leadbetter, 1967, Section 9.2; and also Doob, 1953, p. 62). As a 
consequence of (Al), the process Y of Section 2, viewed as the convolution of the 
process X with the differentiable kernel K ,  is a smooth process which has everywhere- 
differentiable sample paths with probability 1. 

Using (Al) and integration by parts, it is seen that 

and differentiating under the integral sign with respect to t ,  we obtain 

Y’(t) = -h-‘jK’(?)X(v)du = -h - ’ jK’ (u l )X( t  + hul)dul .  

The following identities are obtained directly from (Al)-(A3), Fubini’s theorem and 
integration by parts: 

r(s  - t )  = cov{Y(s), Y ( t ) }  

cov{Y’(s), Y ’ ( t ) }  = \ IK(uI )K(uz)y”{ t  - s + h(ul - u~) }du1duz 

and 

COV{Y(S), Y ’ ( t ) }  = -h - l jK’ (u l )K(uz )y{ t  - s + h(u1 - U z ) } d U 1 d U z .  

After differentiating the final term in (A4) with respect to s and then t ,  and then using 
(AS), we obtain 

cov{Y’(s), Y’(t)} = -r”(s - t ) .  (A6) 
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