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ABSTRACT 
It is shown under general conditions that arbitrarily high asymptotic efficiencies can be obtained 

when the parameters of a stationary time series are estimated by fitting the characteristic functions 
of the process to their empirical versions. A consistency and a central limit result are also given. 

RESUME 
On considere l'estimation des parametres d'une s6rie chronologique stationnaire via l'ajustement 

de la fonction caracteristique du processus a sa version empirique. On montre que, sous des 
conditions non restrictives, une efficacit6 asymptotique arbitrairement grande peut etre atteinte. Un 
resultat a propos de la convergence et un th6oreme de limite centrale sont aussi pr6sent6s. 

1. INTRODUCTION 

Let (Xj)j=_o be a univariate, strictly stationary time series whose distribution depends 
on a parameter 0; we are concerned here with estimation of 0 from a finite realization 
X1,X2,. . ,Xn. Define the (p + 1)-vectors 

yP = (Xj, Xj- ..,.,_p)T (1.1) 

and their characteristic functions (cf's) 

c(t) = E- eitTYf, (1.2) 

where t = (t?, t1,..., tP)T; then the functions cg(t), p = 1,2,..., determine the distribution 
of {Xj} -_oo. Corresponding to (1.2) we may define the sample quantities 

c(t) = 1 E eitTYf. (1.3) 
j=l 

Owing to the statistical dependence amongst successive terms in the sum in (1.3), 
however, these quantities are unlike the empirical cf (ecf) as defined, for example, in 
Feuerverger and Mureika (1977). The quantities (1.2) and (1.3) for stationary processes 
were introduced in Feuerverger and McDunnough (1981b) and, to distinguish from the 
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iid context, were termed there the poly-cf (pcf) and empirical pcf (epcf) respectively. 
Our object here is to address the following question: can estimation of 0 be carried out 
asymptotically efficiently by means of procedures in which cg(t) is "fitted" to cP(t) for 
p (fixed) sufficiently large? We give an affirmative answer under general conditions in 
Theorem 2.3, our main result; but first a basic consistency and a central limit result are 
established in Theorems 2.1 and 2.2. 

For the iid context it was shown in Feuerverger and McDunnough (198 la) that the ecf 
provides a basis for asymptotically efficient inference. While the fact that this result may 
be extended to stationary processes is of theoretical interest, we note that applicable 
methods will result in cases for which the characteristic-function description of the 
process model is more readily available than explicit density functions or scores. 

2. THE RESULTS 

Define the maximal correlation p(q) to be the supremum correlation between square- 
integrable random variables measurable with respect to the 6-fields {... ,X-1,Xo} and 
o{Xq,Xq+i,...} respectively, i.e., p(q) is the maximum correlation possible between 
functions of the Xj's separated in time by a distance q. We shall assume that 

00 

p(q) < oo. (2.1) 
q=l 

While this condition is used in Theorems 2.1 and 2.2 below, we remark that it may be 
replaced there by the weaker requirements of ergodicity and strong mixing, respectively. 
On the other hand, a condition substantially closer to that of (2.1) is needed for the 
existence of the asymptotic covariance structures (2.3) required in the formulation of 
Theorem 2.3. We first establish consistency of the epfc. 
THEOREM 2.1. If {Xj} _oo is a strictly stationary time series satisfying (2.1), then 

(i) n(t) - 
cP(t) a.s. for all t E RP+l, 

(ii) sup_T< ...tP<T Cn(t) - cP(t)l - 0 a.s. for any fixed 0< T < oo. 

Proof. The condition (2.1) implies ergodicity and therefore (1/n) EJ eitTY -- Ee it 
a.s., thus establishing (i). Ergodicity further implies the a.s. convergence of FP(xj,..., 
Xj-p) = (1/n) j=ll[Xj < Xj,..., Xj-p < Xjp], the (p + 1)-dimensional empirical 
d.f., to the d.f. FP(xj,...,xj_p) at all (xj,...,xj_p). Then, arguing as in Chung (1968, 
Section 5.5), for example, this suffices to establish the Glivenko-Cantelli convergence 
supx ,... j- p )F-(Xj, ... ,Xj-p) -FP(xj,... ,xj-p)\ -* 0 a.s., and from this (ii) follows directly 
on applying the criteria of complete convergence and uniform convergence (Loeve 1977, 
p. 204, B and C). Q.E.D. 

We remark that while the question of whether T in part (ii) of the theorem may be 
replaced by a sequence Tn - 0oo is of interest, the sharp result involving Tn = eO(n) of 
Csorgo and Totik (1983) would apparently require a very rapid rate of strong mixing in 
the dependent case, in view of the essential dependence of the proof on the Bernstein 
inequality (ibid., middle of p. 145). 

Define now the epcf process 

Wn(t) = Vn{cn(t) - cP(t)} 
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Since E cP(t) = cP(t), we have E WP (t) = 0 for all t. Concerning the covariance structure, 
under the mixing condition (2.1) we may show that 

00 

lim Cov (WnP(s), WnP(t)) = Cov (isTyp, eitTy) (2.3) 
-o00 r=-oo 

and that this sum converges absolutely. Clearly its rth term may be written down in 
terms of the pcf function of order p+ Irl and under (2.1) becomes negligible as rlI -- oo. 
(In the case where {Xj} is an iid sequence, note that only the terms -p < r < p 
contribute.) In analogy with the ecf, it is to be expected that WnP(t) will converge weakly 
to a Gaussian process over finite regions in Rp+l, assuming adequate mixing and moment- 
type conditions on the underlying process. Such questions are quite technical. However, 
a finite-dimensional version of this result is readily established. 

THEOREM 2.2. Assume {Xj}j??__o satisfies (2.1), and let WP(t), t E Rp+1, be a zero- 
mean complex-valued Gaussian process with the covariance structure (2.3). Then 
(WP(t),..., Wn(tk)) converges in distribution to (WP(tl),... WP(tk)) for all k, and 
all tl,t2,...,tk in Rp+. 

Proof. The result is obtained using a central limit theorem for stationary processes of 
the type of Theorem 18.5.4 of Ibragimov and Linnik (1971). In particular, note that the 
condition (2.1) implies the strong mixing condition of Section 17.2 of the cited reference 
and hence the required central-limit result. Q.E.D. 

Turning now to the inference question which is our main concern here, we shall 
show that under general conditions the epcf lends itself to asymptotically arbitrarily 
highly efficient inference in stationary processes. The procedures considered involve 
minimization (in 0) of quadratic forms such as (Vn- Vo)T-'(Vn- Va), where Vo = 

(Re cd(tl),..., Re P(tk), Im c(tl),..., Imc(tk)) , Vn is its empirical version, and 1-l 
is a consistent estimate of the covariance matrix of Vn determined from (2.3). To 
circumvent the delicate considerations that can arise in connection with inference in 
stochastic processes, we do not attempt any maximal reduction of the assumptions 
required, although the assumptions made are satisfied in many typical situations. The 
basic result is stated and proved below for a real univariate parameter; the extension to 
the multiparameter case is straightforward. 
THEOREM 2.3. Let {Xj}j_O, be a stationary process having distribution belonging to the 
class defined by the pcffunctions cP(t), and suppose the following regularity conditions 
hold: 

(Al) The parameter 0 is real, univariate, and defined on a closed interval with 
unknown true value 00 assumed to lie in the interior. 

(A2) Different values of 0 yield different process distributions. 
(A3) The c>(t) correspond to densities fo(xp,Xp-_,... ,xo)for (Xp,Xp_, ...,Xo) which 

are twice differentiable in 0. 
(A4) The mixing condition (2.1) holds at 0o. 
(A5) The expected conditional Fisher information quantity 

l(O;p)= _E (log fo(xj Xj-'I...xj_P))2 I (~ ~~0;p=E_Oa 

satisfies I(O; p) < oo for all p. 
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(A6) I(0; p) -- I(0) as p --oo, where 0 < 1(0) < oo. 
(A7) ffo(x I xj-1 ,...,xj_p)dxj can be twice differentiated in 0 through the integral 

almost everywhere in xj_- ... ,Xj-p. 
(A8) The densities possess a third derivative satisfying 

a3logfo(xj xj_l,.. . Xj_p) 
13 ,..... __M 

in some neighborhood of 00 where EoM(Xj,...,Xj_p) < oo. 

Then under these assumptions, the procedure based on fitting cP(t) to cn(t) at a grid 
of points tj E Rp+l, j = 1,2, ..., k, by means of (nonlinear) least squares weighted in 
accordance with a consistent estimator of the covariances as given by (2.3) results in 
an estimator which is asymptotically normal and which can be made to have arbitrarily 
high asymptotic efficiency provided that p (fixed) is sufficiently large and the grid {tj} is 
sufficiently fine and extended. 

Proof. For a sample size n, define the expected Fisher information 

i() ( 
a 

lgf(X n * * 
x)) (2.4) 

and use conditioning to see that 

n) 2 

In() = ?E - ( ElogfeX | X ,... ,X1) logf(Xj I X X 
j=l j=l ao 

so that In(O)/n -* I(0) in view of (A.5) and (A.6). Then in the present context, an 
estimator On will be asymptotically efficient provided that ,/Hi(0n- 0) is asymptotically 
normal with mean zero and variance [I()]-1. 

Introduce now the auxiliary estimators 0p to be obtained by solving 
n 

alogfo(Xj I X ,..,Xj-) . (2.5) 

j=1 

The existence of a consistent root 0p of (2.5) for p fixed sufficiently large may be 
established by arguments similar to those needed to establish a consistent root for 
the likelihood equation. Specifically, for fixed p, define the likelihood-like quantity 
Kn(0) = 1n=1 fo(Xj Xjl, ...,Xj_p), and let Sn be the set of sequences {Xj} for 
which both Kn(0o) > Kn(0o + e) and Kn(0o) > Kn(0 - e), where e > 0 is arbitrarily 
small and fixed. Then P(Sn) -- 1. For 

1 gn(0o + 6) foo+e (Xj I Xj- I ...X ) - log og 
n Kn (0o) n jl foo(Xi I xij-,...,Xj_p) 

and, since by (A4) the law of large numbers holds here, this converges to 

o fe X log foo+E(X X < log ? f I ,Xi -p) - 
foo(Xj I Xj-, .... Xi-p) foo(Xi I Xi-1 . i-p) 

Xj_p < og 
Eo fo(X IX j_11, . j_p) 
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in view of Jensen's inequality and the fact that, by (A2), o0 + e and by 00 yield different 
process distributions, so that the two conditional distributions must essentially differ for 
p large enough. Consequently 

1 K.(0o+6) lim -log < 0, 
n--oo n Kn(0O) 

and similarly, 
lim logn < 0, 

n--too n Kn(0o) 

so that indeed Poo(Sn) -- 1. Now Kn(O) is differentiable, so that on Sn we shall have 
a root On of aKn(O)/3l = 0 such that l0n - o0l < e. Thus for any e > 0 there exists a 
sequence of roots satisfying Poo(lOn() - Ool < ) -e 1. Finally, noting that aKn,()/la is 
continuous, the root of (2.5) closest to 00 will be well defined and clearly consistent. 

Next, for any consistent root Op of (2.5) we have, following the usual Taylor-expansion 
approach, that 

V-(0p - o0) = (2.6) 
1 a"2 logfe(Xj I j...j_p) 
n a92 

J=1 

for some 0* between Op and o0. It follows that /-n(0p - 00) is asymptotically normal 
with asymptotic variance {I(0o;p)}-1. The details of this argument are standard [e.g. 
Lehmann (1983, Chapter 6, Theorem 2.3) or Cramer (1946, ?33.3]. Specifically, by 
(A8), 0* in the denominator of (2.6) may be replaced by 00 asymptotically. Secondly, 
by (A4) the process is ergodic, so that the denominator of (2.6) will converge a.s. to 

o00 (32 log fo(Xj I Xj_l,... ,Xj_p)/3O), which, in view of (A7), equals -I(0o; p). Finally, 
by (A4) the process is sufficiently mixing so that the numerator of (2.6) is subject to 
the central limit theorem and hence asymptotically normal [see, for example, Ibragimov 
and Linnik (1971, Chapter 18)]. Then since I(0o;p) -- I(0o), it follows that the auxiliary 
estimators Op approach asymptotic efficiency as p increases. 

To relate this to the epcf context, write (2.5) in the form 

alogfo(xj Ixj_,.....xj_p, djFnV(Xj .. . . . 
.j/ d (lFgf((xj )X'- -Fr(' )(FP(xj,x... j-p)-FP(xj,..,xj_p)) =0, (2.7) 

where FP is the (p + 1)-variate empirical distribution of (Xj, ... ,Xj_p), j = 1,...., n, and 
FP is the actual distribution, whose introduction is seen easily to provide only a term 
whose value is identically zero. Now, applying Parseval's identity, rewrite (2.7) in the 
form 

/ * * * / (t) - ct)W(t)W dt ... dtP = 0, (2.8) 

where the epcf and pcf are obtained from Fourier-transforming FP and FP, while WP is 
obtained via the inverse transform 

W(t) = - 
) .. e i (e-t +X. -.+tPXi_p) a log fo(xj |I xj-_, ....Xj_p) 

W t.dx dj(2.9) (2.9) 
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Examining (2.8), the efficiency claim for the epcf now becomes apparent, although the 
remainder of the proof still requires detailed arguments which closely follow those in 
Sections 3 to 5 of Feuerverger and McDunnough (198 a), to which we must now make 
reference. Specifically, because the conditional score a log fo(xj I xj-1, .... ,xj_p)/O0 is not 
in general integrable (with respect to Lebesgue measure), we must first replace it in (2.7) 
and (2.9) by a tapered version such as {alog f(xj I xj- l...,xj-p)/aO} l=ohM (xj_l), 
where, for example, hM(x) = 1 when {xl < M, and = 0 otherwise. Straightforward 
calculations as in Section 5 of the cited reference then serve to establish that as M -- oo, 
the asymptotic efficiency of the estimating equation (2.7) based on values of M < oo 
approaches that of the equation (2.7) based on M = oo. Next, for any fixed M < oo 
the estimating equation (2.8) may be approximated (using a finite sum) by means of 
a moment estimator (ibid., Section 4) and hence in turn by a least-squares procedure 
as defined in Section 3 of the reference cited. We thus obtain asymptotic efficiencies 
arbitrarily close to that of 0p by discrete procedures based on a sufficiently extensive 
grid {tj}, and hence the result. Q.E.D. 

Although Theorem 2.3 is of theoretical interest, it is important to realize that in 
order to implement the implied procedure, the pcf functions must be available, and 
the covariances (2.3) computed (in terms of the pcf functions) at the gridpoints selected. 
This somewhat limits the feasibility of the procedure in many cases. On the other hand, 
for iid processes, the covariance structure (2.3) is seen to be readily computed as a 
finite sum of pcf functions, and consistently (nonparametrically) estimated, even for s, t 
ranging over appropriate grids in RP+l. This suggests studying estimation procedures, 
for time-series models of the type Xj = hp(Xj_l,Xj_2,...) + ej having iid errors, by 
means of testing for independence, through statistics based upon the epcf functions, 
amongst the fitted residuals in the time-series model. Here the estimates would be taken 
as the parameter values that minimize the statistic measuring dependency. Of course, 
the optimality statement of Theorem 2.3 does not automatically carry over to this new 
procedure, but one might expect that high levels of efficiency would be obtained in many 
cases. This approach holds promise for the analysis of nonlinear time-series models and 
will be considered elsewhere. 
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