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The dimer problem can be solved if one can evaluate the permanent of P = (p;;), the incidence matrix
of the lattice. All known methods of solving the two-dimensional case consist (explicitly or implicitly)
in finding another matrix Q = (g,;), such that p;; = |g;| and per P = |det Q|, and then computing
the determinant of Q. We show that in the three-dimensional case no such matrix Q exists for any choice
of elements g;;, whether real or complex numbers, or quaternions. A stronger negative result of an
asymptotic character seems to be true, but this rests upon a plausible but unproved conjecture.

INTRODUCTION AND STATEMENT OF
RESULTS

Let a, b, ¢ be positive integers with N = abc even,
and define the lattice L to be the set of N points in
three-dimensional Euclidean space with integer co-
ordinates (x,y,z) such that 1 < x<a, 1 <y <b,
1 £ z < ¢. A dimer is a pair of points of L which are
unit distance apart; and a dimer configuration is a
partitioning of L into N disjoint dimers. Let f denote
the number of dimer configurations on L. It can be
proved! that N~ log f tends to a limit (denoted by 4)
as a— ©, b— o0, c¢— oo independently. (For
brevity, we hereafter write N — oo to signify a, b,
¢ — .) The dimer problem is to determine f as a
function of a, b, ¢ and hence (or otherwise) to calcu-
late A.

Number the points of L from 1 to N in a fixed
arbitrary way, and write p,; = 1 or 0, according as the
ith and jth points of: L are or are not unit distance
apart. The N x N matrix P = (p,;) is called the
incidence matrix of L; and it can be shown? that
f?* = per P, the permanent of P. Thus a solution of
the dimer problem is equivalent to an evaluation of
this permanent. Unlike determinants, to which they
bear a superficial algebraic resemblance, permanents
do not enjoy any practicable algorithms for their
evaluation when N is large. However, most of the
elements of P are zero, and this has suggested the
possibility of finding another matrix Q, such that

Pis =g, and per P = [det Q|, ¢y

and so calculating f via det Q. Here the g,; are real or
complex numbers or quaternions; and, if g is a real
or complex number, |g| denotes its modulus in the
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ordinary sense; while, if ¢ is a quaternion, its modulus
lg| is the positive square root of its norm. (The possi-
bility of using quaternions in this context has not, so
far as we know, been mentioned in the literature, but
from private conversations we know that this idea has
occurred independently to several colleagues; for,
indeed, there are anticommuting features in the dimer
problem which lend appeal to use of quaternions as
a tool.) We discuss below two methods of defining the
determinant of a matrix of quaternions.

In the two-dimensional case (i.e., when @ = 1 and
only b — oo and ¢ — c0) all known methods of solving
the dimer problem depend, explicitly or implicitly, on
finding a solution of (1), and a variety of such real
and complex solutions are known. Here we prove that
no solutions exist in the three-dimensional case:
specifically, we show that, when a > 2, b > 4, and
¢ > 4, then '

Pii = || = per P > |det Q|, 2

for any choice of real or complex or quaternion Q.
This does not, however, completely dispose of (1) as
a device for computing 2; for, despite (2), it might
still be true that

lim sup 4N log |det Q| = lim 1N 'log per P = 4,
N-w N—=+w (3)

when p;; = |q,;|. We believe that (3) is actually false;
but the best we can do in this direction is to deduce the
falsity of (3) from the following plausible but unproved
conjecture. Define a block of L to be a set of 32 points
of L whose coordinates (x, y, z) satisfy § < x < £ +
2, n<y<n+4,{<z<{+ 4 for some integers
& n, {. Thus L contains (a — 1)}(b — 3)(c — 3)
different blocks when a > 2, b > 4, ¢ > 4. Given a
dimer configuration on L, we say that a particular
block is smooth if there is no dimer of the configuration
with one of its points in this block and the other point
not in the block. A dimer configuration is called
rough if no block of L is smooth. Let g denote the
number of rough configurations on L. We conjecture
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that

liminf N~logg < A.
N-+w

4)

However, we do not give here the proof that (3) is
false if (4) is true.

DETERMINANTS OF QUATERNION MATRICES

The literature contains two slightly different defi-
nitions of the determinant of a matrix Q with
quaternion elements. They are due to Moore® and
Dieudonné,? and we denote them by det,;, Q and
dety, Q, respectively. We recall that a quaternion can
be written ¢ = o + Bi + yj + 0k, where «, B, y, §
are real numbers and 7, j, k£ are indeterminates satis-
fying i® = j2 = k* = i{jk = —1; that the conjugate of
q is § = o — i — yj — 6k; that the norm of q is
N(g) =9 =gqq = o> + 2 4 y 4 6%; and we write
|g| for the modulus of g, i.e., the positive square
root of N(g). Then |g:g2| = |geqa| = |gu| lg4| for any
quaternions ¢,, g,. We write Q* for the transposed
conjugate of a quaternion matrix Q; we call Q
Hermitian if Q = Q*, i.e., if ¢;; = ¢;;. All matrices
mentioned below are square matrices with quaternion
elements, unless the contrary is explicitly stated.

Dieudonné’s paper deals with a slightly more general
case than we need. Reduced to the quaternion case in
hand, and stripped of its abstract terminology, it
boils down to the following. If Q is a diagonal
matrix, detp Q is defined to be |g|, where ¢ is the
product of the diagonal elements of Q. For general
Q, the value of dety Q is (by definition) unchanged
if, to any row of Q we add a constant multiple of any
other row, it being understood that the constant
multiplier (which is a quaternion) acts as a left-hand
multiplier of the row. Similarly the value is unchanged
for similar operations on columns, the constant
multiplier now being a right-hand multiplier of the
column. The value of det; Q also is unchanged by
any permutation of rows or of columns of Q. As with
ordinary determinants, these row and column
operations let us reduce a general Q to diagonal form,
and so to determine the value of det; Q. Dieudonné
shows that the foregoing requirements are self-
consistent and uniquely determine detp Q, and that
dety (Q,Q,) = dety, Q, dety Q, for any two matrices
Ql » Q2 .

Moore’s definition applies only to the case when Q
is Hermitian. Suppose Q has N rows and N columns,
and write Z for the set {1,2,- -+, N}. Let z be some
given nonempty subset of Z, and suppose that z has
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where i, is a selected element of z, and the sum in (5)
is taken over all permutations of the remaining
unselected elements iy, i3, * - * , i, of z. Thus there are
(s — 1)! summands in (5). The Hermitian character
of Q ensures, as Moore proves, that ¢(z, i,) is a real
number (i.e., a quaternion with 8 = 9 = é = 0) and
that g(z, i;) is independent of the choice of #; in z. We
may thus write ¢(z) in place of (z, i;) and regard the
sum in (5) as being taken over the (s — 1)! different
cycles which can be formed from the elements of z.
Next, let T be a partition of Z into disjoint nonempty
subsets z7, zT', - -+ | z¥ (whose union is Z, of course);
and define

dety, Q = % Q(Zf‘)Q(Z{) o Q(th)’

q(z, i) =3 (—1)'—1%1;,%'.:‘3 MR TR I AN

(6)

where the sum in (6) is over all possible distinct
partitions of Z. [As is usual in a partition, the order of
the parts and the order of the elements in each part is
immaterial; but the order of the parts does not affect
the definition (6), because the g(z7) are all real and
therefore commute; and the order of the elements in
each part does not affect the definition (5), because
q(z,1;) is independent of the selection 7, and the
summation in (5) is over all (s — 1)! permutations of
the remaining unselected elements.]

Moore also proves that, if Q, is an arbitrary
quaternion matrix and if Q is Hermitian, then
Q,Q7 and Q,QQ7 are both Hermitian and

dety, (Q,QQY) = dety, (Q,Q}) dety, Q.

In particular, if we take the diagonal elements of Q, to
be all 1, and all the nondiagonal elements, except just
one of them, to be zero, then it is easy to verify from
(5) that det,, (Q,Qf) = 1. However, by choosing a
succession of such Qy’s to premultiply and postmulti-
ply Q in the fashion of Q,QQF we can reduce Q
to diagonal form, just as with ordinary Hermitian
transformations.® Since clearly det,, Q, = det, QF =
1, we can prove in this way that

det;, Q = |det,, Q| o

for any Hermitian matrix Q. It follows that the nota-
tion |det Q| may be used without ambiguity for either
|detp Q| or |det,, Q| when Q is Hermitian. (It is easy
to see from simple examples that det; Q = det,, Q
is not always true for Hermitian matrices Q.)

5 H. W. Turnbull and A. C. Aitken, An Introduction to the Theory
of Canonical Matrices (Blackie & Son Ltd., Glasgow, 1932), p. 85.
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NEGATIVE FINDING FOR 3-D DIMER PROBLEM

PROOF OF EQUATION (2)

We assume throughout thata > 2, b >4, ¢ >4,
and show that

Pi; =194 and per P < |det Q| ®

leads to a contradiction. The case when the g;; are
real or complex numbers is a particular case of
quaternions g,; with y = é = 0 for all elements, since
then the modulus of the ordinary determinant of Q
coincides with dety, Q, as the above definition of the
latter shows. Hence we may suppose that Q is a qua-
ternion matrix satisfying (8). Color the points of L
black and white after the fashion of a chessboard,
i.e., all points of L at unit distance from a white point
shall be black and vice versa. We say that the ith row
of Q is black or white according as the ith point of L
is black or white. Let T be the permutation of rows of
Q which places all the black rows before all the white
rows, while leaving the relative order of the black
rows among themselves unchanged and similarly
preserving the relative order of the white rows. Apply
this permutation to the rows of Q and the same
permutation to the columns of Q. S‘nce each dimer
contains one black and one white puint wherever it
may be on L, Q is transformed to the form

o= 9

where Q, and Q, are N X }N quaternion matrices.
Then from (8) we have

f2 =perP < |det Q| = det, Q
= detD Q, = detD Q1 detD Qz .
&)

Hence there exists Q,, equal to one or another of Q,

or Q,, such that f < det;, Q,. Butdet,, Q, = det,, QF
from the definitions. Hence,

per P = f? < dety, Q, dety, QfF = dety, ( 0 Qo)
Qr 0
= dety, Q" = [dety Q'), (10)

where Q" is the matrix obtained by applying the
inverse permutation 7! to both the rows and columns
of (,+ ). We have p,, = |¢;;|; and Q" is Hermitian.
Thus if any solution Q of (8) exists, there is at least one
Hermitian solution of (8). Hereafter we suppose that
Q is such a Hermitian solution of (8); and accordingly
we may now interpret det Q as det,, Q.

Let Py, Py, -+, Py denote the points of L in the
fixed enumeration used for specifying the incidence
matrix P. We define an (oriented) polygon on L as a
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cyclic sequence of distinct points of L, say (P, P;, * -
P;). We further say that a polygon is a nonzero
polygon if its sides P; P, , P, P; ,---,P; P;,P;P;
are all of unit length. The cubic character of L guaran-
tees that a nonzero polygon must have an even number
of sides. We include two-sided polygons (i.e., ones
with only a pair of sides P; P; , P, P;) in our discus-
sion; indeed, nonzero two-sided polygons play an
important role, and we call them degenerate polygons.

Let # be any permutation of Z = {1,2,- -, N}.
This permutation can be written, in the usual way, as
a product of disjoint cycles ofo] - - - o] (including
1-cycles if they occur). This product is unique apart
from the order of its terms. A cycle in the product,
say o = (Jijo*""J,), corresponds naturally to a
polygon (P; P, - - - P, ); hence, there is a one-to-one
correspondence between a permutation 7 and a
partition of L into disjoint oriented polygons. How-
ever, each permutation = is in one-to-one correspond-
ence with a product in the expansion of per P =
2 PirwPenta) * ° * Pnsiy) - Moreover, the nonzero prod-
ucts in this expansion correspond to the partitions of
L into polygons which are all nonzero polygons.

Again, in any cycle ¢ = (j,j. - * * ;) we can select
a particular element #,, say the numerically smallest
element in o, and then write ¢ = (ii, - - * i;), where
iyis* * * i; is obtained from j, j, - * - j; by cyclic permu-
tation. Thus a cycle corresponds to a product in the
sum (5); and a permutation 7 = ¢jo - - * o] corre-
sponds to a term (a product of N quaternions) in the
sum obtained by substituting (5) into (6). This
correspondence is one to one and again maps the
nonzero terms in the expansion of det,; Q onto the
partitions of L into nonzero polygons.

Thus the number of nonzero products in the ex-
pansions of per P and dety, Q is f% in both cases.
Since each nonzero product in the expansion of
detyr Q is a product of N unit quaternions, such a
product is a unit quaternion. It now follows from (8)
that the modulus of a sum of /2 unit quaternions can
only be not less than f2 = per P if all these unit
quaternions are equal. Hence every nonzero term in
the expansion of det,, Q must equal (—1)¥/2, because
this is the value of one such particular product
obtained when all the polygons are degenerate, where-
upon each quantity in (5) takes the form

—94,3,9551, = _qilizq-z‘liz =—1
We say that a polygon on L is admissible if it is a
nonzero polygon, and if there exists a polygon-
partition of L, containing this polygon and having all

its other polygons degenerate. Consider any ad-+
missible polygon with 2r sides, and suppose that
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91,92, * * g are the values of ¢;;,,"*,q, . en-
countered in following the cycle o around this polygon.
There is a polygon partition with 4N — r degenerate
polygons besides the given admissible polygon. Hence
the corresponding summand in (6) yields

(=102 @ X=D¥ 7= (=¥,
i.e.,
$@ige* Gop = (1) (12)
for any admissible polygon. In particular,
§192939s = —1 (13)
for an admissible square; and
91929391959s = +1 (14)

for an admissible hexagon (not necessarily a planar
hexagon).

Suppose temporarily thata = 2, b = 4, ¢ = 4. We
show that an admissible hexagon, whose opposite
sides are opposite sides of a cube, lies near the center of
L. This follows from the diagram in Fig. 1. Here the
points of L are denoted by crosses or circles according
to their x coordinate. It is easy to see from similar
diagrams that any square, forming a face of the cube
in the above diagram, is also admissible. Moreover,

P >
L+ K

(Orientation of axes)

F1g. 1. Admissible hexagon in a smooth block.
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this diagram can be embedded in a larger polygon
partition with @ > 2, b > 4, ¢ > 4 by pairing the
points outside this 2 X 4 X 4 configuration in an
obvious fashion. So the existence of this admissible
hexagon also follows for a > 2, b >4, ¢ > 4.

Now consider the cube carrying this admissible,
hexagon, and let the g,; on its sides, with respect to the
marked orientations, be ¢;, g5, * * * , g3, as shown in
Fig. 2. From (14) we have

9:19:9:91dreds = +1 (15)
and from (13) we have
01929592 = 93929198 = 9sG129s9a = —1.  (16)
Hence,
+1 = 192479111295
= ¢192(939)9:911(§s98)91295(49)
= 4192G5(9:9791:195)(9s129594)9s
= 192Gs9s = —1. 17

This contradiction denies (8) and completes the proof
of (2).
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