Some Facts about Idempotent Matrices

- 1. A square matrix **A** is *idempotent* if and only if $A^2 = A$.
- 2. If **A** is idempotent then $trace(\mathbf{A}) = rank(\mathbf{A})$.
- 3. **A** is idempotent if and only if $rank(\mathbf{A}) + rank(\mathbf{I} \mathbf{A}) = n$ where the dimensions of **A** are $n \times n$ and **I** is the $n \times n$ identity matrix.
- 4. The matrices \mathbf{H} , $\mathbf{I} \mathbf{H}$, $\frac{1}{n}\mathbf{J}$, and $\mathbf{H} \frac{1}{n}\mathbf{J}$ (as defined in lecture) are idempotent. (For the last of these, it is first necessary to show that $\mathbf{H}\mathbf{J} = \mathbf{J}$.)
- 5. If $\mathbf{A} = \mathbf{A}_1 + \mathbf{A}_2$ where \mathbf{A} , \mathbf{A}_1 , \mathbf{A}_2 are all idempotent then $\mathrm{rank}(\mathbf{A}) = \mathrm{rank}(\mathbf{A}_1) + \mathrm{rank}(\mathbf{A}_2)$.