Module 1:
Data Set Structures & Management
Section 1: Getting the Data into SAS
In a simple SAS program, a DATA step is used to create a data set. The DATA step consists of a series of statements that create a data set. SAS requires such a data step in order to conduct any set of analyses or procedures using PROC steps.
1.1. Creating an Internal Raw Data File
A DATA step in SAS can be used to create a data set. Typically, a data set can be considered to have a matrix like form where the rows are the observations and the columns are the variables. In SAS space does matter and are used to distinguish one variable value from another. The following series of statements will describe how to create an internal data set in SAS; thus, creating an internal raw data file which can later be used to conduct analyses on in SAS.

1.1.1. General Form
data dataset;

 input variables;

datalines;

the lines of data

;

run;

1.1.2. Data Statement

The DATA statement simply names the data set. It can have any name you deem suitable. Both character and numeric values can be used. You can also use underscores within the name.

1.1.3. Input Statement

The INPUT statement is the keyword that defines the names of the variables and tells SAS where they are in the data set. Naming these variables is most useful in conducting analyses as you may wish SAS to identify only certain variables. Similar to naming a data set, SAS allows you to create a suitable name to describe the variables. Using a maximum of eight characters or numbers is a good guide in creating and containing the names chosen.
SAS can handle different types of data formats; however, here we only consider two types for formatted data. Unless otherwise specified, SAS assumes that variables are character. If you forget to assign a character variable as numeric, SAS will give you an error message in the LOG file when you run it. If the variable is character formatted then a dollar sign ($) is placed after the variable name.

SAS will read input two different ways: (1) list input and (2) column input. In the first form, SAS will read each variable based on the spaces between them. That is the columns are not required to be lined up. It is the spaces between the groups of letters and numbers in the data set that separate the different variables. The latter, column input, requires that the data be in the same columns on every line. In this column form, the column positions need to be specified after the variable name. If the variable is a character then the $ follows the variable name and the column positions follows.
1.1.4. Datalines

This statement tells SAS that the following lines are data. Spacing in data lines does matter. A semicolon (;) must be used on the line following the last line of data.

1.1.5. Run

RUN is an optional last statement in DATA steps and PROC steps. It is required after your last statement in order to signify SAS to execute the preceding statements. This statement makes the LOG file easier to read. It is like the last sentence of the program; however, it can be placed at the end of every DATA step and PROC step.
1.1.6. Examples
Here are some SAS examples from class to help demonstrate the aforementioned DATA step statements.

MEAT Example: Notice that all the variables are numeric in this example and follows the general form of a DATA step.
	data meat;

 input steer time pH;

 datalines;

 1 1 7.02

 2 1 6.93

 3 2 6.42

 4 2 6.51

 5 4 6.07

 6 4 5.99

 7 6 5.59

 8 6 5.80

 9 8 5.51

10 8 5.36

;

Crime Example: Notice that the first variable is a character variable; hence a $ is placed after the variable name in the INPUT statement. I have also removed much of the original data for brevity purposes. It should also be noted that the INPUT statement is a list type – not a column type.

	data crime;

 input city $ violcrim propcrim popn;

 datalines;

AllentownPA 161.1 3162.5 636.7

BakersfieldCA 776.6 7701.3 403.1

BostonMA 648.2 5647.2 2763.4

CharlestonSC 851.7 5587.7 430.3

CorpusChristiTX 611.5 6115.1 326.2

ElmiraNY 176.0 4693.5 97.7

;

Below we consider the same example as if it were a column input. Note that the difference is the inclusion of the column position of the data. Above, the data was not aligned accordingly to be inputted as a column.

	data crime;

 input city $ 1-15 violcrim 17-21 propcrim 23-28 popn 31-36;

 datalines;

AllentownPA 161.1 3162.5 636.7

BakersfieldCA 776.6 7701.3 403.1

BostonMA 648.2 5647.2 2763.4

CharlestonSC 851.7 5587.7 430.3

CorpusChristiTX 611.5 6115.1 326.2

ElmiraNY 176.0 4693.5 97.7

;

1.2. Using Existing External Raw Data Files
In many instances, data files have been created somewhere else in other databases. Typing all the data into SAS just to perform some analysis is a long, tedious and unnecessary process. It is much easier to simply tell SAS where the data exists. Two statements (in SAS) work together to read data from an external file – the FILENAME and INFILE statements.
1.2.1. General Form

filename datain ‘extfile.dat’;
data data set;

 infile datain;

input variables;

run;

1.2.2. Filename Statement

This statement is a linking mechanism. It allows an outside file to be linked to the SAS program by providing it with a SAS name. It works much like an “alias”. The FILENAME statement must precede the DATA step. The reference of the external data file depends on the operating system. In the general form, as shown above the path name is given in single quotes and the filename has a dat extensions.

Here are some possible examples of different operating systems.

Windows, NT, OS/2:
filename datain ‘c:\MyDir\President.dat’;

Unix:

filename datain ‘/home/mydir/president.dat’;

1.2.3. Infile Statement

The INFILE statement follows the DATA statement and precedes the INPUT statement. This statement signals SAS to read the data from an external file rather than from an internal file created using DATALINES.

Some external files may have special characters which separate the variables from each other such as commas instead of spaces. Using the DELIMITER option in the INFILE statement allows you to specify the type of character. This option can be abbreviated to DLM.

Another important useful option which exists in the INFILE statement is the MISSOVER option. Since SAS expects that each line in the data file contains all observations specified in the INPUT statement, this option indicates to SAS to create missing values to variables that SAS expected to find values for but did not. If the data set does not have a missing value to denote a missing observation, SAS will simply read data from the next line which may be incorrect.

These options are stated before the semi-colon of the INFILE statement.

1.2.4. Examples

A SIMPLE Example: Here is a simple example. Remember the pathname will depend on your operating system.
	filename datain 'car.dat';

data cars;

 infile datain;

 input mpg;

run;

Another Example: Here is another example with the delimiter option. The example contains to two data sets (for comparative purposes). The first is for an outside file, and the second is for a DATA step using DATALINES to read the data.

	data one;

 infile datain dlm=',';

 input name age;

run;

data two;

 infile datalines dlm=',';

 input name age;

datalines;

nary,14

jim,22

sue,28

caroline,25

;

run;

And another example: Here is another example using the missover option.

	data one;

 infile datain missover;

 input height weight length volume time;

run;

1.3. Importing External Raw Data Files
Another way of getting SAS to use existing external data files is to have SAS import it. It will scan the data file and automatically determine the variable types and some formats. It has some advantages over other methods of reading external data files.
1.3.1. General Form

proc import datafile=’filename’ out=dataset
 dbms = dlm replace;

getnames = no;
delimiter = ‘delimiter character’;
run;

1.3.2. Proc Import Statement & Some Options
The PROC IMPORT statement in its simplest form requires the DATAFILE and OUT keywords. The DATAFILE keyword tells SAS where the file you want it to read is. The SAS name or alias you want to give that data file is the name defined by the OUT keyword. Again this OUT statement is much like the linking mechanism described by the FILENAME statement described in 1.2.2.

SAS will determine the type of data file being imported based on the extension; however if the file is not have the proper extension or is of type DLM, then the DBMS option should be used. Another option that is useful is the REPLACE option. If you already have an existing SAS data set name as specified by the OUT option, SAS will not overwrite it. The REPLACE option will allow you to tell SAS that it may be overwritten.
Some examples of types of files and the DBMS identifier are as follows:

	Type of File
	Extension
	DBMS Identifier

	Comma-delimited

Tab-delimited

Delimiters other than

 commas or tabs
	.csv

.txt
	CSV

TAB

DLM

1.3.3. Getnames Statement

When importing data files, the PROC IMPORT procedure will assume (by default) that the first line of your data contains the variable names. If this is not the case, the option GETNAMES=no tells SAS that the first line of the data file does not contain the variable names but in fact is the first line of data.
1.3.4. Delimiter Statement

If the DBMS option specified was DLM and the delimiter space is not a space, then SAS requires the DELIMITER statement to identify the type of delimiter.

1.3.5. Examples

Simple Example: In this example, the first row of the dataset contains the variable names and hence the GETNAMES=NO statement was not included.
	proc import
 datafile="A:\classlist.xls"
 out=sta302marks

 DBMS=EXCEL REPLACE;

 run;

Section 2: Creating and Working with SAS Data Sets
Once a SAS data set has been created using a DATA step, you may wish to create more data sets based on the existing one or rearrange or transform the data in some way. Furthermore, you may wish to see that you have done what you set out to do. That is you may wish to see the data. The remaining sections of this module will focus on how to accomplish such goals.
2.1 Other Statements within the Data Step
Some other very useful statements in SAS will allow you to create other SAS data sets without changing the original data set or simply allow you to combine pre-existing data sets together.
2.1.1. General Form

data olddata;

 set olddata; or merge old_data1 old_data2;

by variables;

drop variables; or keep variables;
run;

2.1.2. Set Statement

If you wish to create a new SAS data set from pre-existing one without changing the original data set then it is quite easily accomplished with the SET statement. The SET statement in DATA step indicates which data set SAS should refer to in the program.
You may also want to “set” the data according to a particular variable (using the BY* statement) or based on the condition of a particular variable (using the IF* statement). For instance, you may wish to subset the data based on those over a certain age (given that age is pre-exiting variable in the original SAS data set). Thus, you would set the variable BY age and IF certain specified conditions were met.

· It should be noted that if you choose to use a BY statement you need to sort the data first by that variable or set of variables. This is explained in section 2.2.

· The rules or approaches in using conditional statements such as if will be explained in section 3.

The SET statement is also a way of combining data sets. The SET statement can be used to concatenate data sets. It simply stacks the data sets one on top of the other. Thus, the total number of observations is the sum of the observations from all the data sets. The number of variables is equal to the number of different variables in the data sets to be combined. If you wish the data sets to interleave, then the data sets to be combined should be sorted first by the variable of interest and then set into the combined data set using the BY statement.

2.1.3. Merge Statement

Another way of combining data sets in SAS allows you to place them next to each other rather than stacking them on top of each other. This is most useful when (for example) you have different data (sets) on the same people and you want to create one large data set. If the observations in the different data sets correspond correctly, you can simply give the MERGE statement followed by the SAS data sets to be merged. If however they do not correspond exactly and need to be matched when merging, the BY statement is used to groups the common values. Again, the sort procedure must precede this step.
2.1.4. Drop and Keep Statements
SAS also allows you to subset variables of a dataset. These two statements allow you to exclude or include only certain variables in the SAS data set. Both statements cannot be used in a single data step. If you want to keep more variables then drop, then it is wisest to use the DROP statement and drop the unnecessary ones. Similarly, if there are more variables you wish to drop then keep, it is wisest to apply the KEEP statement and keep which ever variables you deem important.

2.1.5. Limiting the Number of Observations
The previous subsection described how to subset a SAS data set based on the number of variables carried through to the new SAS data set. However, SAS also allows you to limit the number of observations. Section 2.1.2 mentioned the use of a conditioning statement; however, you may choose only a certain group of observations based on their location in the data set. The INFILE options FIRSTOBS and OBS are used to accomplish this. The INFILE option FIRSTOBS signifies which observation to first read while the OBS keyword will tell SAS how many observations to read. These options follow the INFILE keyword and stated before the (;) before the end of the command line.

2.1.6. Examples

An example using the SET and DROP statement: In this example, the original meat example is left unchanged but set into another DATA step to create /redefine new variables. Notice that the only variables remaining in this data set are the time and logtime variables. The original data set is not provided here (for brevity purposes).
	data mod_meat;

 set meat;

 logtime=log(time);

 drop steer pH;

run;

An example using the MERGE and BY statement with PROC SORT: In this example, the original meat example is left unchanged again and we use the data set from the previous example only containing the time variables. Each data set is sorted according to the time variable which is in both data sets and then merged based on the time variable.

	proc sort data=meat;

 by time;

run;

proc sort data=mod_meat;

 by time;

run;

data full_meat;

 merge meat mod_meat;

 by time;

run;

2.2 Sorting the Data

As mentioned in the previous section, a common need when working with data sets is to sort it. This is especially needed when using the BY statement in a SAS DATA step. The SORT procedure (by default) sorts in ascending order.
2.2.1. General Form

proc sort data=dataset;

 by <descending> variables;

run;

2.2.2. PROC SORT Statement

The PROC SORT statement is the procedure that allows you to sort observations by a specified variable. It does not require defining the data set to be sorted; however, it is useful when working with more than one data set in a single SAS program. Otherwise, SAS will consider the previous data set.

2.2.3. By Statement and options
The SORT procedure (by default) sorts in ascending order. In order to sort variables in descending order, simply type DESCENDING before each variable to be sorted in that order.

The order in which the variables are listed in the BY statement will dictate how the variables will be sorted. That is the first variable listed will dictate the primary sort and then within that first variable the second variable will be sorted upon.

2.2.4. Examples

An example using the DESCENDING option in PROC SORT: Consider the meat example again. Here we sort in descending order instead of the default set in SAS to sort by ascending order as done above.

	proc sort data=meat;

 by time descending;

run;

2.3 Seeing the Data – Printing it

When working with data sets, it is also important to see that you have accomplished what you set out to accomplish. The PROC PRINT procedure will assist in seeing the data and also you to see subsets of the data.
2.3.1. General Form

proc print data=dataset;

 by variables;

 var variables;

run;

2.3.2. PROC PRINT Statement

The PROC PRINT statement is the procedure that allows you to see the observations as they are in the SAS data set. It does not require defining the data set to be sorted; however, it is useful when working with more than one data set in a single SAS program. Otherwise, SAS will consider the previous data set.

2.3.3. By Statement

The BY statement in the PROC PRINT procedure allows the data set to be displayed according to a specified variable. This can also be a way of displaying the data in subsets. For instance, if you had a categorical variable asked SAS to print BY a specific variable, it would print the observations according to the categorical variable specified in ascending order.
2.3.4. Var Statement
By default, the PROC PRINT procedure will display all the variables unless the VAR statement is specified. This allows one to see a subset of the variables rather than all the variables in the data set. This is especially useful when dealing with large data sets.

2.3.5. Examples

The Meat Example Again: The first PROC PRINT statement asks SAS to only print the two time variables. That is it specifies which variables to print. The second PROC PRINT statement signals SAS to print out all the observation for all the variables. I have provided the SAS output so you can see more clearly what SAS will do.
	proc print data=full_meat;

title1 'Print just the TIME variables';

var time logtime;

run;
proc print data=full_meat;

title1 'Print all the variables';

run;

SAS Output with VAR Statement
	 Print just the TIME variables

 Obs time logtime

 1 1 0.00000

 2 1 0.00000

 3 2 0.69315

 4 2 0.69315

 5 4 1.38629

 6 4 1.38629

 7 6 1.79176

 8 6 1.79176

 9 8 2.07944

 10 8 2.07944

SAS Output without VAR Statement
	 Print all the variables

 Obs steer time pH logtime

 1 1 1 7.02 0.00000

 2 2 1 6.93 0.00000

 3 3 2 6.42 0.69315

 4 4 2 6.51 0.69315

 5 5 4 6.07 1.38629

 6 6 4 5.99 1.38629

 7 7 6 5.59 1.79176

 8 8 6 5.80 1.79176

 9 9 8 5.51 2.07944

 10 10 8 5.36 2.07944

2.4 Determining the Contents of a SAS Data Set

When working with data sets, it is also important to see that you have accomplished what you set out to accomplish. The PROC PRINT procedure will assist in seeing the data and also you to see subsets of the data.

2.4.1. General Form

proc contents data=dataset <varnum>;
run;

2.4.2. PROC CONTENTS Statement

The PROC CONTENTS statement is the procedure that displays the variables in a data set only. That is the observations are not shown – simply, the variable names and their attributes such as position in the data set, format and labels. SAS will print the contents of the data set in alphabetical order (by default). If you wish the contents to be displayed according to their position in the data set simply type option VARNUM in the PROC CONTENTS statement just before the end of the command line.
 2.4.2. Examples

The Meat Example Again: The first PROC CONTENTS statement requests SAS to display all the variables alphabetically. The second statement requests for the attributes of the variables and the listing of them being displayed in accordance with their positioning in the SAS dataset.

	/* display in alphabetical order */
proc contents data=full_meat;

run;

/* display according to position number */
proc contents data=full_meat varnum;

run;

SAS Output without the VARNUM Option

 2 time Num 8 8

	

SAS Output with the VARNUM Option
	 The CONTENTS Procedure

 Data Set Name: WORK.FULL_MEAT Observations: 10

 Member Type: DATA Variables: 4

 Engine: V8 Indexes: 0

 Created: 17:03 Monday, October 13, 2003 Observation Length: 32

 Last Modified: 17:03 Monday, October 13, 2003 Deleted Observations: 0

 Protection: Compressed: NO

 Data Set Type: Sorted: NO

 Label:

 -----Engine/Host Dependent Information-----

Data Set Page Size: 4096

Number of Data Set Pages: 1

First Data Page: 1

Max Obs per Page: 126

Obs in First Data Page: 10

Number of Data Set Repairs: 0

File Name: C:\DOCUME~1\AMAZUM~1\LOCALS~1\Temp\SAS Temporary

 Files_TD1096\full_meat.sas7bdat

Release Created: 8.0202M0

Host Created: WIN_PRO

 -----Variables Ordered by Position-----

 # Variable Type Len

 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

 1 steer Num 8

 2 time Num 8

 3 pH Num 8

 4 logtime Num 8

Section 3: Working with SAS Data Sets – Data Cleaning,

 Preparing and Manipulation

This section focuses on things that can be done within a DATA step. Foremost, raw data as it is measured or entered into an initial data set may not be the precise for of the variables we wish to carry some analysis on. Thus, this section will show how to use mathematical functions in creating or redefining variables, numerical and character functions as well as conditional and other such logical operands to get the desired variable form. This is fundamental to data preparation and cleaning required for analyses.
3.1 Create and Redefine Variables

It is very simple to create and redefine variables in SAS. In its simplest form, the assignment statement has the following form:
variable = expression;

The variable name is on the left of the equation and on the right side allows for an expression which may be a constant, another variable or mathematical expression as shown in the table below.

	Assignment Statement
	Type of expression

	new_var = 10;

*new_var = ‘ten’;

new_var = old_var;

new_var = old_var + 10;

new_var = old_var - 10;

new_var = old_var * 10;

new_var = old_var / 10;

new_var = old_var ** 10;
	Numeric constant

Character constant

A variable

Addition

Subtraction

Multiplication

Division

Exponentiation

SAS uses the mathematical rules of BEDMAS to perform a series of mathematical operations; however, parentheses can be used to override that order.

· Note that when assigning a variable a character constant, the character value is enclosed in quotes.

3.2 Using SAS Functions

SAS has many functions which allow you to work with data values in a quick and efficient manner. Some perform arithmetic and trigonometric transformations while others work with character variables. SAS functions also exist in computing probabilities from different distributions. SAS functions have the following general form:
function-name(argument, argument, …)

All functions must have parentheses. The arguments are separated by commas and can be variables names, constant values (numeric or character) or expressions.
3.2.1. Numerical Functions

	Function
	Description

	abs(argument)

exp(argument)

int(argument)

log(argument)

log10(argument)

max(argument, argument, …)

min(argument, argument,…)

mean(argument, argument, …)

round(argument, round-off unit)

sqrt(argument)

sum(argument, argument, …)
	Returns absolute value of arg
Raises number e to the power of the arg

Returns integer portion of arg

Computes natural log of arg

Returns base 10 log of arg

Returns largest non-missing value

Returns smallest non-missing value

Computes mean of non-missing values

Rounds to nearest round-off unit

Returns positive square root of arg

Computes sum of non-missing values

3.2.2. Character Functions

	Function
	Description

	left(argument)

right(argument)
length(argument)
substr(argument, position, n)

trim(argument)
	Left-aligns arg

Right-aligns arg

Returns length of arg (not counting blanks)

Extracts substring from arg at ‘position’ for ‘n’
Removes trailing blanks from arg

3.2.3. Probability Functions

	Function
	Description

	poisson(m,n)
probbnml(p,n,m)
probchi(x,df)
cinv(p,df)
probf(x,ndf,ddf)
finv(p,ndf,ddf)
probhypr(N,K,n,x)

probnorm(x)
probit(p)
probt(x,df)
tinv(p,df)
	Returns
[image: image1.wmf])

(

n

X

P

£

where X is a Poisson random variable and
[image: image2.wmf]0

³

m

is the mean.

Returns
[image: image3.wmf])

(

m

X

P

£

where X is a Binomial random variable,
[image: image4.wmf]1

0

£

£

p

 and
[image: image5.wmf]0

>

n

is the number of trials.

Returns
[image: image6.wmf])

(

x

X

P

£

where X is a Chi-square random variable and
[image: image7.wmf]0

³

x

.

Returns pth quantile from Chi-dqaure distribution with df degrees of freedom.

Returns
[image: image8.wmf])

(

x

X

P

£

where X is a F random variable and
[image: image9.wmf]0

³

x

.

Returns pth quantile from F distribution with numerator df and denominator df.
Returns
[image: image10.wmf])

(

x

X

P

£

where X is a hypergeometric random variable, N>1 is population size,
[image: image11.wmf]N

K

£

£

0

 is number in population with special characteristic,
[image: image12.wmf]N

n

£

£

0

is sample size, and
[image: image13.wmf])

,

min(

)

_

,

0

max(

n

K

x

N

n

K

£

£

=

.

Returns
[image: image14.wmf])

(

x

X

P

£

where X is a normal random variable with (=0 and (=1.

Returns pth quantile from standard Normal distribution
Returns
[image: image15.wmf])

(

x

X

P

£

where t is a random variable.

Returns pth quantile of t distribution with df degrees of freedom

3.2.4. Examples

Exhausting the Meat Example: Remember the mod_meat example. We used a numeric function in order to determine the log of the time values. This is simply stated again and the out put can be seen in the proc print example.

	data mod_meat;

 set meat;

 logtime=log(time);

 drop steer pH;

run;

Relapse – the Crime Data Example: Recall the crime example. Now suppose we want to make sure that there are no trailing blanks at the end of the first character variable. That is we only keep what is needed – the data.

	data mod_crime;

 set crime;
 trim city;

run;

3.3 If-Then Statements

Frequently, when working with data sets, you may want to do something to only some portion of the data. That is the assignment statement should apply to only some observations but not all – under some conditions, but not others.

3.3.1 General Form

This conditional logic has the following basic form in SAS:

if condition then action;

The condition is an expression comparing one thing to another, and the action is what SAS should do when the expression is true.

3.3.2 Basic Comparison Operators

The terms on either side of the comparison may be constants, variables or expressions. The terms are separated by a comparison operator, which may be symbolic or mnemonic. Here are some basic comparison operators.

	Symbolic
	Mnemonic
	Meaning

	=
^= or ~=

>

<

>=

<=
	eq
ne

gt

lt

ge

le
	Equals
No equal

Greater than

Less than

Greater than or equal

Less than or equal

3.3.3 IN Operator

Another operator known as the IN operator can also be used for comparative purposes. IN compares the value of the variable to a list of values. It has the following form:

If condition in (arg, arg, …) then action;
3.3.4 Requiring More Than One Action

A single IF-THEN statement can only perform one action. If, however you would like a series of actions to be performed then the keywords DO and END in SAS will execute such a task. It has the following form:

if condition then do;

 action;

 action;

end;

The DO statement causes all SAS statements coming after it to be treated as a unit until a matching END statement appears. This forms a DO loop/group.

3.3.5 Requiring More Than Once Comparison

Instead having a single condition, you may have more criteria to condition on. Keywords such as AND and OR are used to to specify multiple conditions. Such a SAS statement has the following form:
If condition and condition then action;

	Symbolic
	Mnemonic
	Meaning

	&

| or !
	AND

OR
	All comparisons must be true

Only one comparison must be true

3.3.6 Examples

Series of different types of IF-THEN Statement (Car Example): Each IF-THEN statement below corresponds to each explanation/syntax explained above. Note that these statement should not necessarily be run in a single data step as the third one is simply an extension of the first statement.
	data cars;

if model = 'mustang' then make = 'ford';

if model in ('corvette','camaro') then make = 'chevrolet';

if model = 'mustang' then do;

 make = 'ford';

 size = 'compact';

end;

if model = 'mustang' and year < 1975 then status = 'classic';

run;

3.4 If-Then/Else Statements

A common approach in grouping observations is to use IF-THEN/ELSE statements. This can be useful to use when using specific groups to run analyses on. The simplest way is to use a series of if then statements and by adding ELSE IF, SAS will know that the statements are related.

3.4.1 General Form

IF-THEN/ELSE logic has the following basic form:

if condition then action;

 else if condition then action;

 else if condition then action;
3.4.2 Another Form
Sometimes, the last statement is simply just action with no IF-THEN requirements. The general form is then modified to the following:

if condition then action;

 else if condition then action;

 else action;

The last ELSE statement is a default which is executed for all observations failing to satisfy any of the previous IF statements.

3.5 Subsetting the Data Using If Statements

Sometimes you may want to only use some portion of your data and exclude the rest. This is commonly accomplished using an IF statement.
3.5.1 General Form

The basic form of an IF statement is:

if expression;

Although this may look like an incomplete statement it is not. SAS merely only considers those observations that meet the conditional framework.

3.5.2 An Equivalent Form

An equivalent form of this is:

if expression then delete;

This is the opposite but equivalent operation as that discussed above. While the IF expression is an inclusion statement, the DELETE statement is an exclusion statement.

3.5.3 Examples
Example of equivalent examples/statements: Suppose there exists a data set with gender as a variable. There are two possibilities - males or females. Now suppose that you wish to only consider the female population or simply want to conduct separate analyses on these two groups. The following two statements are equivalent and both result in a data set only including the female sample.

	data gender;

 if sex = 'f';

run;

data gender;

 if sex = 'm' then delete;

run;

_1127448780.unknown

_1127448980.unknown

_1127449369.unknown

_1127449410.unknown

_1127449442.unknown

_1127448858.unknown

_1127448943.unknown

_1127448694.unknown

_1127448739.unknown

_1127448650.unknown

