STA 257§ - Fall, 2002
Term Test
October 28, 2002

INSTRUCTIONS:

Time: 105 minutes |

No aids allowed.

Answers that are algebraic expressions should be simplified. Series and
integrals should be evaluated. Numerical answers need not be expressed in
decimal form.

Total points: 70
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1. (10 points)

(a) (S,F,P) is a probability space. Assume F is a valid event Space. State
the three conditions P must satisfy to be a valid probability measure.
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(b) Show how the conditions in (a) result in P(A) = 1 — P(A) where A is
a set in F and A is the complement of A.
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2. (5 points) In Bernoulli trials with success probability i, the probability the

k-1
first success comes on the kth trial is } (%) . Find the probability that

the first success comes on a trial whose number is divisible by 3.
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3. (5 points) Prove the following: if events A and B are independent, then
their complements, A and B, are independent.
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4. (7 points) The entire output of a factory is produced on three machines
which account for 20%, 30%, and 50% of the output, respectively. The
fraction of defective items produced is 5% for the first machine, 3% for the
second, and 1% for the third.

(a) What is the probability that a randomly chosen item produced in this
factory is defective?
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(b) If an item is chosen at random from the total output and is found to
be defective, what is the probability that it was made by the third
machine?
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5. (8 points) Suppose a continuous random variable X has density function

f(z) = ze=**/2 for z > 0 and 0 otherwise.

(a) Verify that f(z) is a valid density function.
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(b) Find the distribution function for X.
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6. (5 points) X is a continuous random variable with possible values {z : 0 <
T < a}, a < oo and density function f(z) and distribution function F(z).

Prove i
EX =/0 (1 - F(t)) dt

(Hint: One possible method is to use integration by parts.)
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7. (5 points) Suppose X is a random variable with Hinite expectation and a is a
real number. Show that if P(X < a) =1 then EX < a. You may asssume
that any properties of expectation given in class are known.
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8. (10 points) Let X and Y be discrete random variables with joint probability
function given by
Pxy(3,5) = 3/8; pxy(3,11) =1/4
px,y(6,5) =1/8; px,y(6,11) = 1/8;
px,y(s, 5) = 1/8

with px y(z,y) = 0 for other values of (z,y).

(a) Compute the marginal probability functions px(z) and py(y).
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(b) Compute the expected value EX.
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(c) Compute P(X +Y > 12).
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9. (15 points) Suppose continuous random variables X, Y have the joint density
function f(z,y) = (6 —z—y), 0 <2 < 2,2 < y < 4 and 0 elsewhere.

(a) Find P(Y — X 2 2).
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(b) Find the marginal density function for Y.
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(c) Find the conditional probability that X is less than 1 given that Y = 3.
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(d) Are X and Y independent? Why or why not?
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