STA 257S - Summer, 1996 Test #1 July 15, 1996

INSTRUCTIONS:

• Time: 50 minutes

• No aids allowed.

• Answers that are algebraic expressions should be simplified. Series and integrals should be evaluated. Numerical answers need not be expressed in decimal form.

• Total points: 50

NAME:		
STUDENT NUMBER:		
TUTOR:		

- 1. The following questions involve a coin being tossed repeatedly. Assume that, on each toss, there are two equally likely outcomes (Heads and Tails).
 - (a) (6 points) The coin is tossed three times. The outcome of every toss is of interest. Describe the probability space.

b)	(6 points) Let the random variable X be the number of Heads minus the number of Tails in the first four tosses of the coin. What is the probability mass function for X ?
(c)	Suppose the coin is tossed until, for the first time, the same result appears two times in succession. Let the random variable Y be the total number of tosses required. i. (3 points) What is the probability mass function for Y ?
	ii. (5 points) Find the probability that an odd number of tosses is required.

2. (5 points) A random variable X takes the values $0,1,2,\ldots$ with positive probability and $P(X \ge k) = \left(\frac{1}{3}\right)^k$ for $k=0,1,2,\ldots$ Identify the distribution of X, including the value of any parameters.

3. (7 points) $X \sim Exponential(\lambda = 2)$. Give the density function of X and find $P(2X^2 + 5 > 55)$.

4. (6 points) Suppose $X \sim Poisson(\lambda)$ (i.e. X has probability mass function $p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$ for $x = 0, 1, 2, 3, \ldots$) Find $E(\frac{1}{1+X})$.

5. Suppose that the density function for the length L of a telephone call is

$$f(x) = \begin{cases} e^{-x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

The cost of a call is

$$C(L) = 2 + 3L \quad \text{if } L > 0$$

Find (you may **not** assume the values for the expectation and variance of an exponential random variable developed in class are known):

(a) (6 points) the mean cost of a call

(b) (6 points) the variance of the cost of a call