STA 303 H1S / 1002 HS - Winter 2011
 Test

March 7, 2011

LAST NAME: \qquad SOLUTIONS FIRST NAME: STUDENT NUMBER:

ENROLLED IN: (circle one) STA 303 STA 1002

INSTRUCTIONS:

- Time: 90 minutes
- Aids allowed: calculator.
- Some formulae are on the last page (page 11).
- Total points: 45

1ab	1cde	2abcde	2fghij	3

1. Many countries survey a random sample of adults every year or two to collect demographic information and opinions on issues ranging from government spending to the state of race relations to the existence and nature of God.

In this question, we will consider data collected from 943 people aged 18-30 in the 2004 American General Social Survey. The variables we will consider are gender (male or female), political party affiliation (Democrat, Independent, or Republican), and response on a 7 point scale to a question rating their political ideology where $1=$ extremely liberal, $2=$ liberal, $3=$ slightly liberal, $4=$ moderate, $5=$ slightly conservative, $6=$ conservative, and $7=$ extremely conservative.
For this question, our interest is in how the levels of liberalism or conservatism in the responses to the political ideology question vary with political party affiliation and gender. Thus we will treat political ideology level as a quantitative variable (variable name: ideology) and examine how its mean differs among the groups of subjects, categorized by political party affiliation (variable name: party) and gender (variable name: gender). The higher the mean ideology, the more conservative the group's responses tended to be.
Some edited SAS output from 2 models is below and on the next page. Some numbers have been replaced by X's.

MODEL 1

(SAS output for question 1 continues on the next page)
(SAS output for question 1 continued)

		Standard		
Parameter	Estimate	Error	t Value	Pr $>\|t\|$
Intercept	4.664062500 B	0.11426291	40.82	<. 0001
party Democrat	-0.896062500 B	0.16255882	-5.51	<. 0001
party Independent	-0.622395833 B	0.15703935	-3.96	<. 0001
party Republican	0.000000000 B		.	
gender Female	-0.231963735 B	0.15287863	-1.52	0.1295
gender Male	0.000000000 B			
party*gender Democrat Female	0.310475362 B	0.21098368	1.47	0.1415
party*gender Democrat Male	0.000000000 B		.	.
party*gender Independent Female	0.142959790 B	0.21181548	0.67	0.4999
party*gender Independent Male	0.000000000 B	.	.	.
party*gender Republican Female	0.000000000 B		.	.
party*gender Republican Male	0.000000000 B		.	.

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

MODEL 2

(Initial output that is the same as for MODEL 1 has been deleted)

Dependent Variable: ideology

	Sum of				
Source	DF	Squares	Mean Square	F Value	Pr $>$ F
Model	3	86.692970	28.897657	17.29	$<.0001$
Error		939	1569.525482	1.671486	
Corrected Total	942	1656.218452			
		R-Square	Coeff Var	Root MSE	ideology Mean
	0.052344	31.56010	1.292860	4.096501	

(Questions related to this output begin on the next page.)

(Question 1 continued)

(a) (4 marks) Write the model that is being estimated in the output labelled MODEL 1; define all variables.
$Y=\beta_{0}+\beta_{1} I_{[\text {Dem }]}+\beta_{2} I_{[\text {Ind }]}+\beta_{3} I_{[\text {Female }]}+\beta_{4} I_{[\text {Dem }]} * I_{[\text {Female }]}+\beta_{5} I_{[\text {Ind }]} * I_{[\text {Female }]}+e$
where:
Y is the political ideology score,
$I_{[D e m]}$ is 1 if party affiliation is Democrat and 0 otherwise,
$I_{[\text {Ind }]}$ is 1 if party affiliation is Independent and 0 otherwise,
$I_{[F e m a l e]}$ is 1 if Female and 0 otherwise, and
e is random error
(b) For the test in MODEL 1 with p-value 0.3370 :
i. (1 mark) What are the null and alternative hypotheses?
$H_{0}: \quad \beta_{4}=\beta_{5}=0$
H_{a} : at least one of β_{4}, β_{5} is not 0
ii. (2 marks) Explain in practical terms what you conclude from the test.

There is no evidence that differences in mean political ideology scores among party affiliations differ with gender.
iii. (4 marks) What are the 4 missing numbers?

$$
\mathrm{DF}=\frac{2}{}
$$

$$
\text { Type III SS }=\quad 1569.525-1565.886=3.64
$$

Mean Square $=\quad 3.64 / 2=1.82$
F Value $=\quad 1.82 / 1.67=1.09$
(Question 1 continued)
(c) (1 mark) For MODEL 2, what practical quantity, if anything, is being estimated by the estimate of the intercept?

The mean political ideology for male Republicans.
(d) (1 mark) For MODEL 2, estimate the mean political ideology score for females whose party affiliation is Democrat.

$$
4.577-0.711-0.076=3.79
$$

(e) (6 marks) Here is a plot showing the mean value of political ideology for each gender, with separate lines for each party affiliation. (Females are on the left and males are on the right. The top line is for Republicans, middle line is for Independents, and bottom line is for Democrats.)

Explain how the interaction plot is consistent with the conclusions that can be drawn from inferences about the fitted model. Support your answer with relevant numbers from the SAS output.

Inference	Plot	Relevant p-value
There is no evidence of an in- teraction	Lines are close to parallel	0.3370
There is no evidence of a dif- ference between genders	Lines are close to horizontal	0.3760
There is a strong evidence of a difference among political party affiliations	Line for Republicans is much higher than lines for other party affilitions	<0.0001

2. In this question, we will work with the same data as in question 1. However, we will only consider people whose party affiliation is Democrat or Republican (people who identified themselves as Independent have been removed from the data) and we will ignore gender. Here we will consider a model for how well party affiliation can be predicted from a person's political ideology score.
Of the m_{i} people who responded that their political ideology is level $i(i=1, \ldots, 7), y_{i}$ (variable name: nDemocrats) is the number whose party affiliation is Democrat. Political ideology (variable name: ideology) is treated as a quantitative explanatory variable in this analysis.
Some SAS output is given below and on the next page. The plot is the logit of the response proportions versus political ideology score. A few numbers in the output have been replaced by X's.

The LOGISTIC Procedure
Model Information
Data Set WORK.BINOMIAL
Response Variable (Events) nDemocrats
Response Variable (Trials) m
Model binary logit
Optimization Technique Fisher's scoring
Number of Observations Read 7
Number of Observations Used 7
Sum of Frequencies Read 630
Sum of Frequencies Used 630

Response Profile		
Ordered	Binary	Total
Value	Outcome	Frequency
1	Event	340
2	Nonevent	290

(SAS output for this question continues on the next page.)
(SAS output for question 2 continued)
Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Deviance and Pearson Goodness-of-Fit Statistics

Criterion	Value	DF	Value/DF	Pr > ChiSq
Deviance	6.0544	5	1.2109	0.3010
Pearson	5.9719	5	1.1944	0.3090

(Questions related to this output begin on the next page.)

(Question 2 continued)

(a) (2 marks) On page 6 you are given a plot of the logit of the response proportions versus political ideology score. What is the purpose of looking at this plot and what do you conclude from it?

Look at it to see if a linear relationship in political ideology seems to be appropriate. It appears to be linear, although the value when political ideology is 5 seems not to follow the pattern well.
(b) (2 marks) Why is the "Number of Observations Read" 7? And how is the "Sum of Frequencies Read" arrived at?

There is one observation for each value of political ideology which gives the 7.
The sum of the frequencies is the total of the numbers of people who responded to each level of political ideology.
(c) (3 marks) Write the log-likelihood function in terms of y_{i}, m_{i}, and the model parameters to be estimated.

Likelihood function:

$$
L=\prod_{i=1}^{7}\binom{m_{i}}{y_{i}} \pi_{i}^{y_{i}}\left(1-\pi_{i}\right)^{\left(m_{i}-y_{i}\right)}
$$

Log-likelihood function:

$$
\log (L)=\sum_{i=1}^{7}\left\{\log \binom{m_{i}}{y_{i}}+y_{i} \log \left(\pi_{i}\right)+\left(m_{i}-y_{i}\right) \log \left(1-\pi_{i}\right)\right\}
$$

where

$$
\pi_{i}=\frac{\exp \left(\beta_{0}+\beta_{1} x_{i}\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{i}\right)}
$$

and x_{i} is the political ideology for the ith observation.
(d) (2 marks) What is the fitted equation? Define all variables.

$$
\log \left(\frac{\hat{\pi}_{i}}{1-\hat{\pi}_{i}}\right)=1.91-0.42 \text { ideology }_{i}
$$

where ideology ${ }_{i}$ is the political ideology score for the i th observation and π_{i} is the probability that a person with that political ideology score is a Democrat.
(e) (1 mark) How would your answer to part (d) change if y_{i} was changed to the number of people whose party affiliation was Republican?

The right side of the equation would be $-1.91+0.42$ ideology $_{i}$.
(Question 2 continued)
(f) (1 mark) From the model, what is the estimate of the probability of belonging to the Democratic party for someone whose response to the political ideology question is $4 ?$

$$
\frac{\exp (1.91-0.42(4))}{1+\exp (1.91-0.42(4))}=0.56
$$

(g) (3 marks) What is the odds ratio estimate for the effect of ideology? For higher responses on the political ideology scale, are the odds of being a Democrat higher or lower? By how much?

Odds ratio: $\exp (-0.42)=0.66$
For higher responses, the odds of being a Democrat are lower.
For each point higher the response on the political ideology scale, the odds of being a Democrat are 66% of what they were for the lower response.
(h) (1 mark) Write down the saturated model.

$$
\begin{aligned}
\operatorname{logit}(\pi)= & \beta_{0}+\beta_{1} I_{[i d e o l o g y=1]}+\beta_{2} I_{[\text {ideolog } y=2]}+\beta_{3} I_{[\text {ideolog } y=3]}+\beta_{4} I_{[\text {ideolog } y=4]} \\
& +\beta_{5} I_{[i d e o l o g y=5]}+\beta_{6} I_{[i d e o l o g y=6]}
\end{aligned}
$$

(i) (4 marks) From the SAS output that you are given, can you carry out a Likelihood Ratio Test to test whether the coefficient of ideology is statistically significantly different from 0? If yes, carry it out, giving each of the following: (I) the test statistic, (II) the distribution of the test statistic under the null hypothesis, (III) the p-value, (IV) the conclusion. If no, state what is needed to find each of these 4 things.

YES!
Test statistic: $869.393-823.862=45.531$
Distribution of the test statistic under H_{0} : chi-square with 1 df
p-value: < 0.0001
Conclusion: There is strong evidence that the coefficient is not 0, so the odds of being a Democrat are related to the response to the political ideology question.
(j) (1 mark) You are given the Pearson (PearsonRes) and Deviance (DevRes) residuals? What can you conclude from them?

Both residuals are much smaller for the 5th observation than for all the other observations; it can be considered an outlier. The model overestimates the log-odds of being a Democrat for a person whose response to the political ideology question is 5 .
3. (6 marks) Fill out the table below to compare and contrast features of the models used in questions 1 and 2.

	First Model in Question 1	Model in Question 2
Underlying probability distribution of the response (You do not need to specify the parameters of the distribution.)	Normal	Binomial
Condition that must hold regarding the variance in order for inferences to be valid	Same for all observations	Variance varies for each observation with the value of π_{i} and $m_{i} ;$ the variance is $m_{i} \pi_{i}(1-$ $\left.\pi_{i}\right)$
Probability distribution used to calculate the p-value for the test with null hypothesis that the coefficients of all parameters except the intercept are 0 (You do not need to specify the pa- rameters (or df) of the distribution.)	F	chi-square

Some formulae:

Pooled t-test
$t_{o b s}=\frac{\bar{y}_{1}-\bar{y}_{2}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$

Linear Regression

$$
b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum x_{i} y_{i}-n \overline{x y}}{\sum x_{i}^{2}-n \bar{x}^{2}} \quad b_{0}=\bar{y}-b_{1} \bar{x}
$$

One-way analysis of variance

$$
\begin{array}{ll}
\mathrm{SSTO}=\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} & \mathrm{SSE}=\sum_{g=1}^{G} \sum_{(g)}\left(y_{i}-\bar{y}_{g}\right)^{2} \\
\mathrm{SSR}=\sum_{g=1}^{G} n_{g}\left(\bar{y}_{g}-\bar{y}\right)^{2} &
\end{array}
$$

Bernoulli and Binomial distributions

$$
\begin{array}{cc}
\text { If } Y \sim \operatorname{Bernoulli}(\pi) & \text { If } Y \sim \operatorname{Binomial}(m, \pi) \\
\mathrm{E}(Y)=\pi, \operatorname{Var}(Y)=\pi(1-\pi) & \mathrm{E}(Y)=m \pi, \operatorname{Var}(Y)=m \pi(1-\pi)
\end{array}
$$

Logistic Regression with Binomial Response formulae

$$
\begin{gathered}
\text { Deviance }=2 \sum_{i=1}^{n}\left\{y_{i} \log \left(y_{i}\right)+\left(m_{i}-y_{i}\right) \log \left(m_{i}-y_{1}\right)-y_{i} \log \left(\hat{y}_{i}\right)+\left(m_{i}-y_{i}\right) \log \left(m_{i}-\hat{y}_{1}\right)\right\} \\
D_{\text {res }, i}=\operatorname{sign}\left(y_{i}-m_{i} \hat{\pi}_{i}\right) \sqrt{2\left\{y_{i} \log \left(\frac{y_{i}}{m_{i} \hat{\pi}_{i}}\right)+\left(m_{i}-y_{i}\right) \log \left(\frac{m_{i}-y_{i}}{m_{i}-m_{i} \hat{\pi}_{i}}\right)\right\}} \\
P_{\text {res }, i}=\frac{y_{i}-m_{i} \hat{\pi}_{i}}{\sqrt{m_{i} \hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)}}
\end{gathered}
$$

Model Fitting Criteria

$$
\mathrm{AIC}=-2 \log (L)+2(p+1)
$$

$$
\mathrm{SC}=-2 \log (L)+(p+1) \log (N)
$$

