STA 303 H1S / 1002 HS – Winter 2010 Test February 25, 2010

LAST NAME:	FIRST NA	AME:		
STUDENT NUMBER:				
ENROLLED IN: (circle one)	STA 303	STA 1002		
INSTRUCTIONS:				
• Time: 90 minutes				
• Aids allowed: calculator.				
• Some formulae are on the last page (page 10).				

• Total points: 45

1a	1bcd	2	3a	3b(i,ii,iii,iv)	3b(v,vi,vii)	4

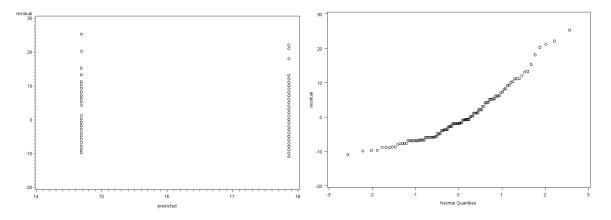
1. A manufacturing facility needs to be able to switch from one type of package to another quickly to react to changes in orders. Consultants have developed a new method of changing the production line and used it to produce a sample of 48 change-over times (in minutes). Also available is an independent sample of 72 change-over times (in minutes) for the existing method. Does the mean change-over time differ between the two methods?

Here is some output from SAS for these data.

The GLM Procedure

Class Level Information

		Class nethod	Leve		Values Existing	New		
			Observati Observati			120 120		
Dependent V	Variable: ch	angeove	2					
			S	um of				
Source		DF	-	uares	Mean S	quare	F Valu	e Pr > F
Model		1	290.0	68056	290.0	68056	5.0	8 0.0260
Error		118	6736.9	23611	57.0	92573		
Corrected 1	otal	119	7026.9	91667				
	R-Square	Coef	f Var	Root	MSE ch	angeov	er Mean	
	0.041279	45.5	54071	7.555	963	1	6.59167	
Source		DF	Туре	I SS	Mean S	quare	F Valu	e Pr>F
method		1	290.06		290.06	-	5.0	8 0.0260
Source		DF	Type I	II SS	Mean S	quare	F Valu	e Pr > F
method		1	290.06	80556	290.06	80556	5.0	8 0.0260
					Standard			
Parameter		E	stimate		Error		Value	Pr > t
Intercept		14.68	3750000 B	1	.09060928		13.47	<.0001
-	Existing		7361111 B		.40797053		2.25	0.0260
	New		0000000 B	-				
					-		•	•


NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

(a) (1 mark) Is there evidence of a difference in the means of change-over time between the two methods? Explain.

(b) (2 marks) What are the means of the 48 change-over times from the new method and the 72 change-over times from the existing method?

- (c) (3 marks) Explain, in the context of this problem, the meaning of the following note produced by SAS:
 - NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

(d) (3 marks) Below are a plot of the residuals versus the predicted values and a normal quantile plot of residuals. What do you conclude from them?

2. An alternative formulation of the model that could have been used in question 1 is

$$Y_{gi} = \theta_g + \epsilon_{gi}, \quad g = 1, 2$$

where Y_{gi} is the change-over time for the *i*th observation using the *g*th method and ϵ_{gi} are random errors. By the method of least squares, the estimates of θ_g are found by minimizing

$$\sum_{g=1}^{2} \sum_{i=1}^{n_g} (Y_{gi} - \theta_g)^2$$

with respect to θ_1 , θ_2 .

(a) (2 marks) Find the least squares estimates of θ_1 and θ_2 .

(b) (2 marks) How are θ_1 and θ_2 related to the parameters of the model fit in question 1?

- 3. A book on baseball uses regression analysis to compare the success of 30 Major League Baseball teams. One relationship the author considers is the linear relationship between market size (that is, the population, in millions, of the city associated with each team (variable name: population)) and the number of times the team made the playoffs in the 10 seasons between 1995 and 2004 (variable name: appearances). The author found that "it is hard to find much correlation between market size and success in making the playoffs. The relationship is quite weak."
 - (a) (2 marks) The author's comments are about a linear regression analysis that was carried out. Indicate two concerns that potentially threaten the validity of this analysis.

(b) Some SAS output for an appropriate logistic regression analysis is given below and on the next page. A few numbers have been replaced by letters.

The LOGISTIC Procedure

Model Informa	tion
Data Set	WORK.A
Response Variable (Events)	appearances
Response Variable (Trials)	n
Model	binary logit
Optimization Technique	Fisher's scoring
Number of Observations R	ead 30
Number of Observations U	
Sum of Frequencies Read	300
Sum of Frequencies Used	300
	000
Response Pro	file
Ordered Binary	Total
Value Outcome	Frequency
1 Event	80
2 Nonevent	220
Model Convergence	Status
Convergence criterion (GCONV	
	,
Deviance Goodness-of-Fit	Statistic
Criterion Value DF	Value/DF Pr > ChiSq
Deviance 116.2229 (A)	4.1508 <.0001
Number of events/trials o	bservations: 30

		Model H	Fit Statistic	cs	
	Criter	ion	Intercept On	nly Intere	cept and Covariates
	AIC		349.949	-	(B)
	SC		353.653		351.483
	-2 Log	L	347.949		340.075
		-	Null Hypothes		
Test			i-Square		> ChiSq
LIK	elihood Rat:	10	(C)	1	0.0050
	Analysi	s of Maxim	num Likelihoo	od Estimates	
	J		Standard	Wald	
Parameter	DF E:	stimate	Error	Chi-Square	Pr > ChiSq
Intercept	1 .	-1.4584	0.2110	47.7649	-
population	1	0.0781	0.0275	8.0534	0.0045
		Odds Ra	atio Estimate		
	Effect		Estimate		nfidence Limits
	population	-	1.081	1.024	(D)
	Obs	team	DevResid	Pearson	Resid
	1	Mets	-1.92105		nobiu
	2	Yankees	3.76061		
	3	Angels	-1.22434		
	4	Dodgers	-0.52485		
	5	Cubs	-0.85685		
	6	WhiteSox			
	7	Phillies	-2.48767	-1.90432	
	8	Rangers	0.29713	0.30201	
	9	Marlins	-0.41610	-0.40514	
	10	Astros	1.68376	1.81046	
	11	BlueJays	-2.40481	-1.83112	
	12	Tigers	-2.38611	-1.81475	
	13	RedSox	1.72103	1.85669	
	14	Braves	5.30552		
	15	Athletic	1.09465	1.15770	
	16	Giants	0.98205	1.02942	
	17	Expos	-2.30392	-1.74343	
	18	Diamondb	0.50449	0.52033	
	19	Mariners	1.21489	1.29822	
	20	Twins	0.53480	0.55290	
	21	Padres	-0.18949	-0.18692 2.10315	
	22	Cardinal	1.91378	-0.16108	
	23 24	Orioles Pirates	-0.16301 -2.22632	-1.67701	
	24 25	DevilRay	-2.22032	-1.67472	
	26	Rockies	-0.97242	-0.89234	
	20	Indians	2.62450	2.95412	
	28	Reds	-0.95668	-0.87852	
	29	Royals	-2.18087	-1.63850	
	30	Brewers	-2.15560	-1.61721	

- i. (5 marks) Give the values of the missing numbers. ((D) is worth 2 marks.)
 - (A) = _____ (B) = _____ (C) = _____
 - (D) = _____

ii. (2 marks) Give the p-values for 2 tests with null hypothesis that the coefficient of population is 0.

iii. (2 marks) Explain what is being tested by the Deviance Goodness-of-Fit test.

iv. (2 marks) Explain in practical terms the interpretation of the estimated coefficient of population.

v. (2 marks) What population is associated with an estimated 50% chance of making the playoffs?

vi. (2 marks) What do you conclude from the residuals?

vii. (4 marks) Does the fitted model appear to be appropriate from the SAS output you are given? What else would you like to see to assess the appropriateness of the model?

4. A textile researcher is interested in how four different colours of dye affect the durability of fabrics. Because the effects of the dye may be different for different types of cloth, he applies each dye to five different kinds of cloth. For each kind of cloth, 24 fabric specimens are cut from a length of the cloth and the first six of the 24 specimens are dyed the first colour, the second six the second colour, etc. All 120 specimens are tested for durability, measured as the length of time for the fabric to break down under a stress.

Explain how you would carry out the analysis on the resulting data. In particular, indicate:

- (a) (1 mark) The type of analysis (one-way analysis of variance, two-way analysis of variance, binary response logistic regression, or binomial response logistic regression) to be carried out.
- (b) (3 marks) The response variable and the explanatory variables as they will be entered into the model.

(c) (5 marks) The test(s) you would carry out to evaluate effects of dye on the durability of the fabrics. For the test(s) indicate the null and alternative hypotheses and the probability distribution(s) (including the degrees of freedom) of the test statistic(s) under the null hypothesis.

(d) (2 marks) Do you have any concerns about the validity of the tests? Why or why not?

Some formulae:

Pooled t-test

$$t_{obs} = \frac{\overline{y}_1 - \overline{y}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Linear Regression

$$b_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2} = \frac{\sum X_i Y_i - n \overline{XY}}{\sum X_i^2 - n \overline{X}^2} \qquad b_0 = \overline{Y} - b_1 \overline{X}$$

One-way analysis of variance

$$SSTO = \sum_{i=1}^{N} (Y_i - \overline{Y})^2$$
$$SSE = \sum_{g=1}^{G} \sum_{(g)} (Y_i - \overline{Y}_g)^2$$
$$SSR = \sum_{g=1}^{G} n_g (\overline{Y}_g - \overline{Y})^2$$

Bernoulli and Binomial distributions

If
$$Y \sim \text{Bernoulli}(\pi)$$

 $E(Y) = \pi, \text{Var}(Y) = \pi(1 - \pi)$
If $Y \sim \text{Binomial}(m, \pi)$
 $E(Y) = m\pi, \text{Var}(Y) = m\pi(1 - \pi)$

Logistic Regression with Binomial Response formulae

 $\begin{aligned} \text{Deviance} &= 2\sum_{i=1}^{n} \left\{ y_i \log(y_i) + (m_i - y_i) \log(m_i - y_1) - y_i \log(\hat{y}_i) + (m_i - y_i) \log(m_i - \hat{y}_1) \right\} \\ &D_{res,i} = \text{sign}(y_i - m_i \hat{\pi}_i) \sqrt{2 \left\{ y_i \log\left(\frac{y_i}{m_i \hat{\pi}_i}\right) + (m_i - y_i) \log\left(\frac{m_i - y_i}{m_i - m_i \hat{\pi}_i}\right) \right\}} \\ &P_{res,i} = \frac{y_i - m_i \hat{\pi}_i}{\sqrt{m_i \hat{\pi}_i (1 - \hat{\pi}_i)}} \end{aligned}$

Model Fitting Criteria

AIC =
$$-2\log(L) + 2(k+1)$$
 SC = $-2\log(L) + (k+1)\log(N)$