UNIVERSITY OF TORONTO

Faculty of Arts and Science

APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS

Duration - 3 hours

Aids Allowed: Calculator

LADI MANIL.	LAST	NAME:
-------------	------	-------

FIRST NAME:_____

STUDENT NUMBER: _____

• There are 27 pages including this page.

• The last page is a table of formulae that may be useful. For all questions you can assume that the results on the formula page are known.

• A table of the chi-square distribution can be found on page 26.

• Total marks: 90

1abcd	1efg	1hi	2ab	2cde	2fghi

3a	3bcdef	4abcd	4efg	5

1. A study was carried out to investigate the effects of heredity and environment on intelligence. From adoption registers, researchers selected samples of adopted children whose biological parents and adoptive parents came from either the very highest or the very lowest socio-economic status (SES) categories. They attempted to obtain samples of size 10 from each combination (1. high adoptive SES and high biological SES, 2. high adoptive SES and low biological SES, 3. low adoptive SES and high biological SES, and 4. low SES for both parents). However, only 8 children belonged to combination 3. The 38 selected children were given intelligence quotient (IQ) tests. Some output from SAS for this analysis is given below and on the next 2 pages. The variables adoptive and biologic each take on the values High and Low, indicating the SES of the respective parents.

		IQ				
		Mean	Std	N		
		+ 	+ ا ا	 		
High	High	119.60	12.25	10.00		
 	 Low	103.60	12.71	10.00		
 Low	High	107.50	11.94	8.00		
 	Low	92.40	15.41	10.00		

The GLM Procedure

Class	Level Informa	ation	
Class	Levels	Values	
adoptive	2	High Low	
biologic	2	High Low	
Number of Obse	rvations Read	1	38
Number of Obse	ervations Used	1	38

Dependent Variable: IQ

			S	um of					
Source		DF	Sq	uares	Mean	Square	F	Value	Pr > F
Model		(A)	(C)	1257.	003509		7.19	0.0007
Error		(B)	5941.2	00000	((D)			
Corrected 1	lotal	37	9712.2	10526					
	R-Square	Coeff	Var	Root	MSE	IQ	Mean		
	0.388275	12.5	0799	13.23	1897	105	.6842		

Output continues on the next page

Source	DF	Type I SS	Mean Square	F Value	Pr > F
adoptive	1	1477.632749	1477.632749	8.46	0.0064
biologic	1	2291.471895	2291.471895	13.11	0.0009
adoptive*biologic	1	1.905882	1.905882	0.01	0.9174
Source	DF	Type III SS	Mean Square	F Value	Pr > F
adoptive	1	1277.388235	1277.388235	7.31	0.0106
biologic	1	2275.788235	2275.788235	13.02	0.0010
adoptive*biologic	1	1.905882	1.905882	0.01	0.9174

The GLM Procedure

Class	Level Inform	mation
Class	Levels	Values
adoptive	2	High Low
biologic	2	High Low

Number	of	Observations	Read	38
Number	of	Observations	Used	38

Dependent Variable: IQ

			Sum	of					
Source		DF	Squai	res	Mean	Square	F	Value	Pr > F
Model		2	3769.1046	644	1884	.552322		11.10	0.0002
Error		35	5943.1058	382	169	.803025			
Corrected To	tal	37	9712.2105	526					
	R-Square	Coeff	Var	Root M	ISE	IQ	Mean	ı	
	0.388079	12.3	32999	13.030	85	105	.6842	2	
Source		DF	Type I	SS	Mean	Square	F	Value	Pr > F
adoptive		1	1477.6327	749	1477	. 632749		8.70	0.0056
biologic		1	2291.4718	895	2291	.471895		13.49	0.0008
Source		DF	Type III	SS	Mean	Square	F	Value	Pr > F
adoptive		1	1276.0052	229	1276	.005229		7.51	0.0096
biologic		1	2291.4718	895	2291	.471895		13.49	0.0008
	Level of				-IQ			-	
	adoptive	N		Mean		Sto	d Dev	T	
	High	20	111.6	500000		14.662	25193	3	
	Low	18	99.1	111111		15.623	38464	ł	
		Le	ast Square	es Mean	IS				
		adopt	ive	IQ LSM	IEAN				
		High	1	111.600	0000				
		Low		99.976	6471				

Output continues on the next page

(Question 1 continued)

Questions begin on the next page.

- (a) (4 marks) Some numbers in the SAS output on page 2 have been replaced by letters. What are the missing values?
 - $(A) = _$
 - (B) = _____
 - (C) = _____
 - (D) = _____
- (b) (1 mark) Two linear models have been fit in the output above. In the first linear model, how many β 's (coefficients of terms in the linear model) must be estimated?
- (c) (2 marks) Why can the first model be considered a saturated model? Explain why, in this case, it is possible to carry out inference.

(d) (2 marks) What is being tested by the test with *p*-value 0.9174? What do you conclude?

(e) (2 marks) For the second linear model, some "Least Squares Means" are given. Explain clearly how they are calculated.

(f) (2 marks) Why does one of the "Least Squares Means" differ from the means given in the table above the least squares means?

(g) (3 marks) From the results of this study, what do you conclude about the relationship between parental socio-economic status and IQ? Quote relevant p-values to support your conclusions.

(h) (3 marks) The first graph on page 4 is a plot of the mean IQ of the children, classified by the socio-economic status of their adoptive and biological parents. Explain how it illustrates your conclusions from part (g).

(i) (4 marks) Do you trust your conclusions from part (g)? Why or why not?

- 2. Some of the debate about capital punishment in the U.S. has revolved around the rôle race plays in the decision to use it. The 674 subjects considered in this question were the defendants in murder cases in Florida between 1976 and 1987. SAS output for 4 models is given below and on the next 3 pages. The variables are:
 - V the race of the victim (either black (B) or white (W))
 - D the race of the defendant (either black (B) or white $({\tt W}))$
 - C verdict for capital punishment (yes (Y) or no $({\tt N}))$

MODEL 1

The GENMOD Procedure

	Model Infor	mation		
Distri	bution	Р	oisson	
Link F	unction		Log	
Depend	ent Variabl	е	count	
Number of O Number of O	bservations bservations	Read Used		8 8
Cla	ss Level In	format	ion	
Class	Level	s V	alues	
V		2 В	W	
D		2 В	W	
С		2 N	Y	

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	4	402.8353	100.7088
Scaled Deviance	4	402.8353	100.7088
Pearson Chi-Square	4	419.5584	104.8896
Scaled Pearson X2	4	419.5584	104.8896
Log Likelihood		2725.4956	
Full Log Likelihood		-220.4376	
AIC (smaller is better)		448.8752	
AICC (smaller is better)		462.2085	
BIC (smaller is better)		449.1930	

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

				Standard	Wald 95% C	onfidence	Wald	
Parameter		DF	Estimate	Error	Lim	its	Chi-Square	Pr > ChiSq
Intercept		1	3.6172	0.1255	3.3713	3.8632	830.72	<.0001
V	В	1	-1.1753	0.0907	-1.3531	-0.9974	167.81	<.0001
V	W	0	0.0000	0.0000	0.0000	0.0000		
D	В	1	-0.9277	0.0855	-1.0953	-0.7602	117.81	<.0001
D	W	0	0.0000	0.0000	0.0000	0.0000		
С	Ν	1	2.1874	0.1279	1.9367	2.4380	292.53	<.0001
С	Y	0	0.0000	0.0000	0.0000	0.0000		
Scale		0	1.0000	0.0000	1.0000	1.0000		

MODEL 2

The GENMOD Procedure

Мос	del Informat:	ion	
Distribut	tion	Poisson	
Link Fund	ction	Log	
Dependent	t Variable	count	
Number of Obse	ervations Rea	ad 8	
Number of Obse	ervations Use	ed 8	
Class	Level Inform	mation	
Class	Levels	Values	
V	201012	B W	
D	2	2 B W	
C	2	N Y	
Criteria For	Assessing Go	oodness Of Fit	
Criterion	DF	Value	Value/DF
Deviance	3	22.2659	7.4220
Scaled Deviance	3	22.2659	7.4220
Pearson Chi-Square	3	19.7018	6.5673
Scaled Pearson X2	3	19.7018	6.5673
Log Likelihood		2915.7803	
Full Log Likelihood		-30.1529	
AIC (smaller is better)		70.3058	
AICC (smaller is better)		100.3058	
BIC (smaller is better)		70.7030	

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates								
				Standard	Wald	95%	Wald	
		DF	Estimate	Error	Confidence	ce Limits	Chi-Square	Pr > ChiSq
		1	3.8526	0.1239	3.6097	4.0955	966.09	<.0001
В		1	-3.3737	0.2542	-3.8721	-2.8754	176.08	<.0001
W		0	0.0000	0.0000	0.0000	0.0000	•	
В		1	-2.2751	0.1516	-2.5722	-1.9780	225.30	<.0001
W		0	0.0000	0.0000	0.0000	0.0000		
Ν		1	2.1874	0.1279	1.9367	2.4380	292.53	<.0001
Y		0	0.0000	0.0000	0.0000	0.0000	•	
В	В	1	4.4654	0.3041	3.8694	5.0614	215.64	<.0001
В	W	0	0.0000	0.0000	0.0000	0.0000	•	
W	В	0	0.0000	0.0000	0.0000	0.0000		
W	W	0	0.0000	0.0000	0.0000	0.0000	•	•
	B W W N Y B B W W	B W W N Y B B W W W W	Anal DF 1 W 0 B 1 W 0 N 1 Y 0 B B 1 Y 0 B B 1 B W 0 W B 0 W 0 W 0	Analysis Of Ma DF Estimate 1 3.8526 B 1 -3.3737 W 0 0.0000 B 1 -2.2751 W 0 0.0000 N 1 2.1874 Y 0 0.0000 B B 1 4.4654 B W 0 0.0000 W B 0 0.0000 W W 0 0.0000	Analysis Of Maximum Likel Standard DF Estimate Error 1 3.8526 0.1239 B 1 -3.3737 0.2542 W 0 0.0000 0.0000 B 1 -2.2751 0.1516 W 0 0.0000 0.0000 N 1 2.1874 0.1279 Y 0 0.0000 0.0000 B 1 4.4654 0.3041 B W 0 0.0000 0.0000 W 0 0.0000 0.0000 0.0000	Analysis Of Maximum Likelihood Para Standard Wald DF Estimate Error Confidence 1 3.8526 0.1239 3.6097 B 1 -3.3737 0.2542 -3.8721 W 0 0.0000 0.0000 0.0000 B 1 -2.2751 0.1516 -2.5722 W 0 0.0000 0.0000 0.0000 N 1 2.1874 0.1279 1.9367 Y 0 0.0000 0.0000 0.0000 B 1 4.4654 0.3041 3.8694 B W 0 0.0000 0.0000 W 0 0.0000 0.0000 0.0000	Analysis Of Maximum Likelihood Parameter Est Standard Wald 95% DF Estimate Error Confidence Limits 1 3.8526 0.1239 3.6097 4.0955 B 1 -3.3737 0.2542 -3.8721 -2.8754 W 0 0.0000 0.0000 0.0000 B 1 -2.2751 0.1516 -2.5722 -1.9780 W 0 0.0000 0.0000 0.0000 0.0000 N 1 2.1874 0.1279 1.9367 2.4380 Y 0 0.0000 0.0000 0.0000 0.0000 B 1 4.4654 0.3041 3.8694 5.0614 B W 0 0.0000 0.0000 0.0000 W 0 0.0000 0.0000 0.0000 0.0000	Analysis Of Maximum Likelihood Parameter Estimates Standard Wald 95% Wald DF Estimate Error Confidence Limits Chi-Square 1 3.8526 0.1239 3.6097 4.0955 966.09 B 1 -3.3737 0.2542 -3.8721 -2.8754 176.08 W 0 0.0000 0.0000 0.0000 0.0000 . B 1 -2.2751 0.1516 -2.5722 -1.9780 225.30 W 0 0.0000 0.0000 0.0000 . . N 1 2.1874 0.1279 1.9367 2.4380 292.53 Y 0 0.0000 0.0000 0.0000 . . B 1 4.4654 0.3041 3.8694 5.0614 215.64 B W 0 0.0000 0.0000 . . W 0 0.0000 0.0000 0.0000 . . W 0 0.0000 0.0000 0.0000 .

MODEL 3

The GENMOD Procedure

Мос	del Informat	ion	
Distribu	ution	Poisson	
Link Fund	ction	Log	
Dependent	t Variable	count	
Number of Obse	ervations Re	ad 8	
Number of Obse	ervations Us	ed 8	
Class	Level Infor	mation	
Class	Levels	Values	
V	2	ВW	
D	2	ВW	
C	2	N Y	
Criteria For	Assessing G	oodness Of Fit	
Criterion	DF	Value	Value/DF
Deviance	2	5.3940	2.6970
Scaled Deviance	2	5.3940	2.6970
Pearson Chi-Square	2	5.8109	2.9054
Scaled Pearson X2	2	5.8109	2.9054
Log Likelihood		2924.2162	
Full Log Likelihood		-21.7170	
AIC (smaller is better)		55.4339	
AICC (smaller is better)		139.4339	
BIC (smaller is better)		55.9106	

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates									
					Standard	Wald	95%	Wald	
Parameter			DF	Estimate	Error	Confiden	ce Limits	Chi-Square	Pr > ChiSq
Intercept			1	4.0610	0.1258	3.8145	4.3076	1042.18	<.0001
V	В		1	-4.9710	0.5675	-6.0833	-3.8588	76.74	<.0001
V	W		0	0.0000	0.0000	0.0000	0.0000		•
D	В		1	-2.2751	0.1516	-2.5722	-1.9780	225.30	<.0001
D	W		0	0.0000	0.0000	0.0000	0.0000		
С	N		1	1.9526	0.1336	1.6908	2.2144	213.68	<.0001
С	Y		0	0.0000	0.0000	0.0000	0.0000		
V*C	В	Ν	1	1.7045	0.5237	0.6780	2.7310	10.59	0.0011
V*C	В	Y	0	0.0000	0.0000	0.0000	0.0000		
V*C	W	N	0	0.0000	0.0000	0.0000	0.0000		
V*C	W	Y	0	0.0000	0.0000	0.0000	0.0000		
V*D	В	В	1	4.4654	0.3041	3.8694	5.0614	215.64	<.0001
V*D	В	W	0	0.0000	0.0000	0.0000	0.0000		•
V*D	W	В	0	0.0000	0.0000	0.0000	0.0000		
V*D	W	W	0	0.0000	0.0000	0.0000	0.0000		•
Scale			0	1.0000	0.0000	1.0000	1.0000		

MODEL 4

The GENMOD Procedure

Model Information						
Distribution P	oisson					
Link Function	Log					
Dependent Variable	count					
Number of Observations Read		8				
Number of Observations Used		8				

Class	Level Inf	ormation
Class	Levels	Values
V	2	ВW
D	2	ВW
С	2	ΝY

Criteria For Assessing Goodness Of Fit

	•		
Criterion	DF	Value	Value/DF
Deviance	1	0.3798	0.3798
Scaled Deviance	1	0.3798	0.3798
Pearson Chi-Square	1	0.1978	0.1978
Scaled Pearson X2	1	0.1978	0.1978
Log Likelihood		2926.7234	
Full Log Likelihood		-19.2098	
AIC (smaller is better)		52.4197	
AICC (smaller is better)			
BIC (smaller is better)		52.9758	
Algorithm converged.			

Analysis Of Maximum Likelihood Parameter Estimates

					Standard	Wald	95%	Wald	
Parameter			DF	Estimate	Error	Confiden	ce Limits	Chi-Square	Pr > ChiSq
Intercept			1	3.9668	0.1374	3.6976	4.2361	833.78	<.0001
V	В		1	-5.6696	0.6459	-6.9355	-4.4037	77.06	<.0001
V	W		0	0.0000	0.0000	0.0000	0.0000		
D	В		1	-1.5525	0.3262	-2.1918	-0.9132	22.66	<.0001
D	W		0	0.0000	0.0000	0.0000	0.0000		
С	N		1	2.0595	0.1458	1.7736	2.3453	199.40	<.0001
С	Y		0	0.0000	0.0000	0.0000	0.0000		
V*D	В	В	1	4.5950	0.3135	3.9805	5.2095	214.78	<.0001
V*D	В	W	0	0.0000	0.0000	0.0000	0.0000		
V*D	W	В	0	0.0000	0.0000	0.0000	0.0000		
V*D	W	W	0	0.0000	0.0000	0.0000	0.0000		
D*C	В	Ν	1	-0.8678	0.3671	-1.5872	-0.1483	5.59	0.0181
D*C	В	Y	0	0.0000	0.0000	0.0000	0.0000		
D*C	W	Ν	0	0.0000	0.0000	0.0000	0.0000		
D*C	W	Y	0	0.0000	0.0000	0.0000	0.0000		
V*C	В	Ν	1	2.4044	0.6006	1.2273	3.5816	16.03	<.0001
V*C	В	Y	0	0.0000	0.0000	0.0000	0.0000		
V*C	W	N	0	0.0000	0.0000	0.0000	0.0000		
V*C	W	Y	0	0.0000	0.0000	0.0000	0.0000		

(a) (4 marks) For each of the 4 models for which output is given, give a practical interpretation of the relationships among the variables (assuming that the model is appropriate).

(b) (4 marks) Show how the value for the "Full Log Likelihood" is calculated for model 1. Give your answer in terms of the observed counts y_{ijk} .

(c) (1 mark) For model 1, explain why the degrees of freedom for the "Criteria For Assessing Goodness Of Fit" is 4.

(d) (5 marks) Use a likelihood ratio test to compare the fits of models 1 and 3. State the null and alternative hypotheses, the test statistic, the distribution of the test statistic under the null hypothesis, the *p*-value, and your conclusion.

(e) (4 marks) Carry out the Deviance Goodness-of-Fit test for model 3. State the null and alternative hypotheses, the test statistic, the distribution of the test statistic under the null hypothesis, the *p*-value, and your conclusion.

(f) (2 marks) Using model 4, what is the estimated count of the number of cases with a verdict of capital punishment for which the defendant and victim were both white?

(g) (3 marks) Using model 4, estimate the odds of receiving a verdict in favour of capital punishment if the defendant was black.

(h) (4 marks) For model 4, what evidence is available from the SAS output that the model is adequate? What else would you like to see to ensure that the Wald tests are appropriate?

(i) (2 marks) Which of the 4 models would you choose for these data? Why?

3. Below is some additional output analysing the data from question 2. nCapital is the number of cases for which the verdict was for capital punishment.

MODEL A

The LOGISTIC Procedure Model Information Response Variable (Events) nCapital Response Variable (Trials) m Model binary logit Fisher's scoring Optimization Technique Number of Observations Read 4 Number of Observations Used 4 674 Sum of Frequencies Read Sum of Frequencies Used 674 Response Profile Ordered Binary Total Value Outcome Frequency Event 68 1 2 Nonevent 606 Class Level Information Design Variables Class Value V В 1 W 0 D В 1 W 0 Model Convergence Status Quasi-complete separation of data points detected. WARNING: The maximum likelihood estimate may not exist. WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable. Model Fit Statistics Intercept Intercept and Only Criterion Covariates AIC 442.843 426.577 447.356 444.630 SC -2 Log L 440.843 418.577 Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	22.2659	3	<.0001
Score	19.7018	3	0.0002
Wald	14.6545	3	0.0021

Output for MODEL A continues on the next page.

Output for MODEL A continued

Type 3 Analysis of Effects									
Wald									
			Effe	ct DF	C	hi-Square	Pr > C	hiSq	
			V	1		0.0032	0.	9547	
			D	1		5.0991	0.	0239	
			V*D	1		0.0020	0.	9640	
			Anal	ysis of Ma	ximum	Likelihoo	d Estimat	es	
						Standard		Wald	
Para	neter		DF	Estima	te	Error	Chi-Sq	uare	Pr > ChiSq
Inter	rcept		1	-2.05	56	0.1459	198.	5297	<.0001
V		В	1	-11.30	15	198.8	0.	0032	0.9547
D		В	1	0.84	26	0.3731	5.	0991	0.0239
V*D		ΒB	1	8.96	63	198.8	0.	0020	0.9640
	Assoc	iatio	on of	Predicted	Prob	abilities	and Obser	ved Re	sponses

Association of Predicted	Propapilities	and Ubserve	a kesponse
Percent Concordant	35.3 S	omers' D	0.261
Percent Discordant	9.1 G	amma	0.589
Percent Tied	55.6 T	au-a	0.047
Pairs	41208 c		0.631

MODEL B

The LOGISTIC Procedure

Model Information

(SOME OUTPUT OMITTED HERE THAT IS THE SAME AS FOR MODEL A)

Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

	Intercept	Intercept and
Criterion	Only	Covariates
AIC	442.843	424.957
SC	447.356	438.496
-2 Log L	440.843	418.957

resering dresdr narr nypeenesrs, some

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	21.8861	2	<.0001
Score	18.7847	2	<.0001
Wald	16.2460	2	0.0003

Output for MODEL B continues on the next page.

Output for MODEL B continued

			Тур	e 3 A	nalysis	of Effe	cts				
						Wald					
		Effect	5	DF	Chi-Sq	uare	Pr > Ch	niSq			
		V		1	16.	0262	<.(0001			
		D		1	5.	5889	0.0	0181			
		Analys	sis of	Maxi	.mum Like	lihood	Estimate	es			
		5			Stand	ard	Wa	ald			
Parameter		DF	Esti	mate	Er	ror	Chi-Squa	are	Pr	> C!	hiSq
Intercept		1	-2.	0595	0.1	458	199.39	973		<./	0001
v	В	1	-2.	4044	0.6	006	16.02	262		<./	0001
D	В	1	0.	8678	0.3	671	5.58	389		0.0	0181
				Odds	Ratio Es	timates					
				Po	oint	95	% Wald				
		Effect		Estim	ate	Confid	ence Lir	nits			
		V B vs	W	0.	090	0.028	().293			
		D B vs	W	2.	382	1.160	4	1.890			
Assoc	iati	lon of H	Predic	ted P	robabili	ties an	d Observ	ved Re	spoi	nses	
	Per	cent Co	oncord	lant	35.3	Some	rs' D	0.26	1		
	Per	cent Di	iscord	lant	9.1	Gamm	a	0.58	9		
	Per	cent Ti	ied		55.6	Tau-	a	0.04	7		

(a) (4 marks) Give test statistics and *p*-values for two tests comparing models A and B. What do you conclude? (As part of your conclusion, you should be choosing one of model A or B.)

41208

с

Pairs

0.631

- (b) (2 marks) For the model you chose in part (a), describe the relationship among the 3 variables.
- (c) (2 marks) Using model B, estimate the odds of receiving a verdict in favour of capital punishment if the defendant and victim were both black.

(d) (2 marks) The SAS output for model A includes the message below. Explain what the message indicates.

Quasi-complete separation of data points detected. WARNING: The maximum likelihood estimate may not exist. WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown

are based on the last maximum likelihood iteration. Validity of the model fit is questionable.

(e) (2 marks) For model A, what are the hypotheses for the likelihood ratio test under the heading "Testing Global Null Hypothesis: BETA=0" in the SAS output? What do you conclude?

(f) (2 marks) Do you prefer the analysis carried out on these data in question 2 or question 3? Why?

4. A study followed the orthodontic growth of 27 children (16 males and 11 females). At ages 8, 10, 12, and 14, the distance (in millimeters) from the center of the pituitary to pterygomaxillary fissure was measured. The investigators were interested in how the growth of this distance varied as the boys and girls grew. In the analysis below, age was treated as a categorical variable.

Some SAS output is given below for 3 models that were fit to the resulting data.

MOE	DEL I
The Mixed 1	Procedure
Madal Tafa	
Model Inio.	rmation distance
	distance Compound Summetry
Subject Effect	compound Symmetry
Estimation Method	BEMI
Besidual Variance Method	Profile
Fixed Effects SE Method	Model-Based
Degrees of Freedom Method	Retween-Within
Degrees of freedom nethod	Decmeen within
Class Level	Information
Class Levels Value	S
sex 2 Femal	e Male
subject 27 F01 F	02 F03 F04 F05 F06 F07
F08 F	09 F10 F11 M01 M02 M03
MO4 M	05 M06 M07 M08 M09 M10
M11 M	12 M13 M14 M15 M16
age 4 8 10	12 14
Dimens	ions
Covariance Paramet	ers 2
Columns in X	15
Columns in Z	0
Subjects	27
Max Obs Per Subjec	t 4
-	
Number of Ob	servations
Number of Observations	Read 108
Number of Observations	Used 108
Number of Observations	Not Used 0
Iteration	History
Iteration Evaluations -2	Res Log Like Criterion
	470.49084642
1 1	423.40853283 0.0000000
Convergence cr	iteria met.

Output for MODEL I continues on the next page.

Output for MODEL I continued

	Est	imated	R Corre	lation Mat	rix
	for s	ubject(sex) FO	1 Female	
Row	Col1	Č	o12	Col3	Col4
1	1.0000	0.6	245	0.6245	0.6245
2	0.6245	1.0	000	0.6245	0.6245
3	0.6245	0.6	245	1.0000	0.6245
4	0.6245	0.6	245	0.6245	1.0000
	Covaria	nce Par	ameter 1	Estimates	
	Cov Parm	Subj	ect	Estim	ate
	CS	subj	ect(sex) 3.2	854
	Residual			1.9	750
		Fit St	atistic	S	
	-2 Res Log	Likeli	hood	42	3.4
	AIC (small	er is b	etter)	42	7.4
	AICC (smal	ler is	better)	42	7.5
	BIC (small	er is b	etter)	43	0.0
	Null Mod	ol Tiko	lihood	Ratio Test	
	DF	Chi-Sau	are	Pr > Chi	Sa
	1	47 uni	08	< 00	01
	-				-
	Туре З'	Tests o	f Fixed	Effects	
	N	um	Den		
Effe	ct 1	DF	DF 1	F Value	Pr > F
age		3	75	35.35	<.0001
sex		1	25	9.29	0.0054
age*	sex	3	75	2.36	0.0781

MODEL II

(The output was edited to remove Class Level Information and Number of Observations (both same as model I) and Iteration History (convergence criteria were met).)

The Mixed Procedure

		Model Info	rmation	n						
Dependent Variable distance										
Covari	ance Structu	res	Varia	Variance Components.						
			Autoregressive							
Subjec	t Effect		subje	ct(sex)						
Estima	tion Method		REML							
Residu	al Variance	Method	Profi	le						
Fixed	Effects SE M	ethod	Model-	-Based						
Degree	s of Freedom	Method	Conta	inment						
0										
		D	imensio	ons						
Covariance Parameters 3										
	Columns	in X			15					
	Columns	in Z			27					
	Subjects				1					
	Max Obs	Per Subjec	t	1	108					
	Es	timated R	Correla	ation Mat	rix					
	for	subject(se	x) F01	Female						
Row	Col1	Col	2	Col3	Col4					
1	1.0000	-0.0582	2 0	.003390	-0.00020					
2	-0.05822	1.000	0 -0	0.05822	0.003390					
3	0.003390	-0.0582	2	1.0000	-0.05822					
4	-0.00020	0.00339	0 -0	0.05822	1.0000					
	Covari	ance Param	eter Es	stimates						
	Cov Parm	Subj	ect	Est	timate					
	<pre>subject(sex</pre>)		3	3.3423					
	AR(1)	subj	ect(sez	x) -0.	05822					
	Residual			1	.9206					
		Fit Stat	istics							
	-2 Res Lo	g Likeliho	od	42	23.3					
	AIC (smal	ler is bet	ter)	42	29.3					
	AICC (sma	ller is be	tter)	42	29.5					
	BIC (smal	ler is bet	ter)	43	33.2					
	Туре З	Tests of	Fixed H	Effects						
		Num De	n							
Ef	fect	DF D	F F	Value	Pr > F					
ag	e	3 7	5	37.60	<.0001					
se	x	1 2	5	9.28	0.0054					
ag	age*sex 3 75 2.51 0.0649									

MODEL III

(The output was edited to remove Class Level Information and Number of Observations (both same as models I and II) and Iteration History (convergence criteria were met).)

	The M	lixed P	rocedure	
	Model In	format	ion	
Dependent Varia	hle	dis	stance	
Covariance Stru	cture	IIns	structured	
Subject Effect	coure	gub	viect(sev)	
Eatimation Moth	ad		IT	
Estimation Metho	Ju na Mathad	ner. Nor		
Residual Varian	Ce Method	NOI		
Fixed Effects S	E Method	Mod	lei-Based	
Degrees of Free	aom Methoa	Вет	ween-within	
		Dimens	sions	
Covar	iance Param	eters	-	10
Colum	ns in X			15
Colum	ns in Z			0
Subje	cts			27
Max 0	bs Per Subj	ect		4
	0			
	Estimated	R Corr	elation Mat	rix
f	or subject(sex) F	701 Female	
Row Co	11 C	o12	Col3	Col4
1 1.00	0.5	707	0.6613	0.5216
2 0.57	07 1.0	000	0.5632	0.7262
3 0.66	13 0.5	632	1.0000	0.7281
4 0.52	16 0.7	262	0.7281	1.0000
	Fit St	atisti	lcs	
-2 Res	Log Likeli	hood	414	4.0
AIC (si	maller is b	etter)	xxx	XXX
AICC (smaller is	better	r) 436	6.5
BIC (si	maller is b	etter)	447	7.0
Null	Model Like	lihood	l Ratio Test	
DF	Chi-Squ	are	Pr > Chis	Sq
9	56	.46	<.000	01
Тур	e 3 Tests o	f Fixe	ed Effects	
	Num	Den		
Effect	DF	DF	F Value	Pr > F
age	3	25	34.45	<.0001
sex	1	25	9.29	0.0054
age*sex	3	25	2.93	0.0532

Continued

(a) (1 mark) The models include the interaction of sex and age. Explain in practical terms why this was included in the models.

(b) (2 marks) The model was fit using the mixed models procedure in SAS. Explain why the model is "mixed".

(c) (4 marks) Write the model that was fit in model I, carefully defining all terms. (Do not write the fitted equation; write the model in terms of its parameters.)

(d) (2 marks) For model I, why is the number of covariance parameters equal to 2?

(e) (1 mark) What is the value of AIC for model III?

(f) (2 marks) AR(1) is a commonly used covariance structure in situations such as this, where observations are taken over time. Explain why it is not an appropriate covariance structure for these data by comparing at least 2 different kinds of information given in the SAS output.

(g) (2 marks) How do the conditions for valid inference for this model differ from the conditions needed for a multiple linear regression model?

- 5. (a) (6 marks) In order for inferences to be valid, conditions must be met. Assume standard analyses that were taught in this course are being carried out.
 - i. Give two examples of conditions that must be met for both analysis of variance and binomial logistic regression models in order for the inferences to be valid.
 - ii. Give two examples of conditions that must be met for the inferences to be valid for an analysis of variance model but which are not necessary for a binomial logistic regression model.
 - iii. Give two examples of conditions that must be met for the inferences to be valid for a binomial logistic regression model but which are not necessary for an analysis of variance model.
 - (b) (4 marks) Here are two recent quotes from lecture.

"What does it mean if you make predictions from a fitted model that does not adequately describe the data?"

"Only do inference on valid models."

Imagine it is sometime in the future and you have been hired to do the statistical analysis on the data collected from a scientific study. How will the ideas behind these quotes affect the work you will do? And why is this important?

TABLE B.3 Percentiles of the χ^2 Distribution.

	Entry is $\chi^2(A; \nu)$ where $P\{\chi^2(\nu) \le \chi^2(A; \nu)\} = A$									
$\frac{1}{\chi^2(A; v)}$										
					A					
v	.005	.010	.025	.050	.100	.900	.950	.975	.990	.995
1	0.0 ⁴ 393	0.0 ³ 157	0.0 ³ 982	0.0 ² 393	0.0158	2.71	3.84	5.02	6.63	7.88
2	0.0100	0.0201	0.0506	0.103	0.211	4.61	5.99	7.38	9.21	10.60
3	0.072	0.115	0.216	0.352	0.584	6.25	7.81	9.35	11.34	12.84
4	0.207	0.297	0.484	0.711	1.064	7.78	9.49	11.14	13.28	14.86
5	0.412	0.554	0.831	1.145	1.61	9.24	11.07	12.83	15.09	16.75
6	0.676	0.872	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55
7	0.989	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.73	26.76
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.26	7.26	8.55	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.59	13.24	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	34.38	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	36.74	40.11	43.19	46.96	49.64
28	12.46	13.56	15.31	16.93	18.94	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	51.81	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	37.69	63.17	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	55.33	85.53	90.53	95.02	100.4	104.2
80	51.17	53.54	57.15	60.39	64.28	96.58	101.9	106.6	112.3	116.3
90	59.20	61.75	65.65	69.13	73.29	107.6	113.1	118.1	124.1	128.3
100	67.33	70.06	74.22	77.93	82.36	118.5	124.3	129.6	135.8	140.2

Some formulae:

Pooled t-test Test for two proportions

$$t_{obs} = \frac{\overline{y}_1 - \overline{y}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \qquad z_{obs} = \left(\hat{\pi}_1 - \hat{\pi}_2\right) / \sqrt{\hat{\pi}_p (1 - \hat{\pi}_p) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

$$b_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2} = \frac{\sum X_i Y_i - n \overline{XY}}{\sum X_i^2 - n \overline{X}^2} \qquad b_0 = \overline{Y} - b_1 \overline{X}$$

One-way analysis of variance

$$SSTO = \sum_{i=1}^{N} (Y_i - \overline{Y})^2 \qquad SSE = \sum_{g=1}^{G} \sum_{(g)} (Y_i - \overline{Y}_g)^2 \qquad SSR = \sum_{g=1}^{G} n_g (\overline{Y}_g - \overline{Y})^2$$

Bernoulli and Binomial distributions

If $Y \sim \operatorname{Binomial}(m, \pi)$ If $Y \sim \text{Bernoulli}(\pi)$ $E(Y) = m\pi, Var(Y) = m\pi(1 - \pi)$ $E(Y) = \pi, Var(Y) = \pi(1 - \pi)$

Logistic Regression with Binomial Response formulae

Deviance =
$$2\sum_{i=1}^{n} \{y_i \log(y_i) + (m_i - y_i) \log(m_i - y_1) - y_i \log(\hat{y}_i) + (m_i - y_i) \log(m_i - \hat{y}_1)\}$$

$$D_{res,i} = \operatorname{sign}(y_i - m_i \hat{\pi}_i) \sqrt{2 \left\{ y_i \log\left(\frac{y_i}{m_i \hat{\pi}_i}\right) + (m_i - y_i) \log\left(\frac{m_i - y_i}{m_i - m_i \hat{\pi}_i}\right) \right\}}$$
$$P_{res,i} = \frac{y_i - m_i \hat{\pi}_i}{\sqrt{m_i \hat{\pi}_i (1 - \hat{\pi}_i)}}$$

Multinomial distribution for 2 × 2 table $\Pr\left(\mathbf{Y} = \mathbf{y}\right) = \frac{n!}{y_{11}!y_{12}!y_{21}!y_{22}!} \pi_{11}^{y_{11}} \pi_{12}^{y_{12}} \pi_{21}^{y_{21}} \pi_{22}^{y_{22}}$. 1. •1

Poisson distribution

$$Pr(Y = y) = \frac{\mu^y e^{-\mu}}{y!}, \ y = 0, 1, 2, \dots$$

$$E(Y) = \mu, \ Var(Y) = \mu$$

Two-way contingency tables (easily generalizable to three-way tables)

$$\begin{aligned} X^2 &= \sum_{j=1}^J \sum_{i=1}^I \frac{(y_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}} & G^2 &= 2 \sum_{j=1}^J \sum_{i=1}^I y_{ij} \log\left(\frac{y_{ij}}{\hat{\mu}_{ij}}\right) \\ D_{res,ij} &= \operatorname{sign}(y_{ij} - \hat{\mu}_{ij}) \sqrt{2 \left\{ y_{ij} \log\left(\frac{y_{ij}}{\hat{\mu}_{ij}}\right) - y_{ij} + \hat{\mu}_{ij} \right\}} \\ P_{res,ij} &= \frac{y_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}}} \end{aligned}$$

Model Fitting Criteria

$$AIC = -2\log(L) + 2p \qquad SC = -2\log(L) + p\log(N)$$