UNIVERSITY OF TORONTO

Faculty of Arts and Science
 APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS

Duration - 3 hours

Aids Allowed: Calculator

LAST NAME:

\qquad FIRST NAME:

STUDENT NUMBER:

- There are 27 pages including this page.
- The last page is a table of formulae that may be useful. For all questions you can assume that the results on the formula page are known.
- A table of the chi-square distribution can be found on page 26 .
- Total marks: 90

1abcd	1efg	1hi	2ab	2cde	2fghi

3 a	3 bcdef	4 abcd	4 efg	5

1. A study was carried out to investigate the effects of heredity and environment on intelligence. From adoption registers, researchers selected samples of adopted children whose biological parents and adoptive parents came from either the very highest or the very lowest socio-economic status (SES) categories. They attempted to obtain samples of size 10 from each combination (1. high adoptive SES and high biological SES, 2. high adoptive SES and low biological SES, 3. low adoptive SES and high biological SES, and 4 . low SES for both parents). However, only 8 children belonged to combination 3 . The 38 selected children were given intelligence quotient (IQ) tests.
Some output from SAS for this analysis is given below and on the next 2 pages. The variables adoptive and biologic each take on the values High and Low, indicating the SES of the respective parents.

The GLM Procedure

Class Level Information

Class	Levels	Values
adoptive	2	High Low
biologic	2	High Low

Number of Observations Read 38
Number of Observations Used 38

Dependent Variable: IQ

Output continues on the next page

(Question 1 continued)

Source	DF	Type I SS	Mean Square	F Value	Pr $>$ F
adoptive	1	1477.632749	1477.632749	8.46	0.0064
biologic	1	2291.471895	2291.471895	13.11	0.0009
adoptive*biologic	1	1.905882	1.905882	0.01	0.9174
Source	DF	Type III SS	Mean Square	F Value	Pr $>\mathrm{F}$
adoptive	1	1277.388235	1277.388235	7.31	0.0106
biologic	1	2275.788235	2275.788235	13.02	0.0010
adoptive*biologic	1	1.905882	1.905882	0.01	0.9174

The GLM Procedure

Class Level Information

Class	Levels	Values
adoptive	2	High Low
biologic	2	High Low

Number of Observations Read 38
Number of Observations Used 38

Dependent Variable: IQ

Level of adoptive	N	Mean	Std Dev
High	20	111.600000	14.6625193
Low	18	99.111111	15.6238464

\quad Least	Squares Means
adoptive	IQ LSMEAN
High	111.600000
Low	99.976471

Output continues on the next page
(Question 1 continued)

Questions begin on the next page.
(a) (4 marks) Some numbers in the SAS output on page 2 have been replaced by letters. What are the missing values?
$(\mathrm{A})=$ \qquad
$(\mathrm{B})=$ \qquad
$(\mathrm{C})=$ \qquad
$(\mathrm{D})=$ \qquad
(b) (1 mark) Two linear models have been fit in the output above. In the first linear model, how many β 's (coefficients of terms in the linear model) must be estimated?
(c) (2 marks) Why can the first model be considered a saturated model? Explain why, in this case, it is possible to carry out inference.
(d) (2 marks) What is being tested by the test with p-value 0.9174 ? What do you conclude?
(Question 1 continued)
(e) (2 marks) For the second linear model, some "Least Squares Means" are given. Explain clearly how they are calculated.
(f) (2 marks) Why does one of the "Least Squares Means" differ from the means given in the table above the least squares means?
(g) (3 marks) From the results of this study, what do you conclude about the relationship between parental socio-economic status and IQ? Quote relevant p-values to support your conclusions.
(Question 1 continued)
(h) (3 marks) The first graph on page 4 is a plot of the mean IQ of the children, classified by the socio-economic status of their adoptive and biological parents. Explain how it illustrates your conclusions from part (g).
(i) (4 marks) Do you trust your conclusions from part (g) ? Why or why not?
2. Some of the debate about capital punishment in the U.S. has revolved around the rôle race plays in the decision to use it. The 674 subjects considered in this question were the defendants in murder cases in Florida between 1976 and 1987. SAS output for 4 models is given below and on the next 3 pages. The variables are:
V - the race of the victim (either black (B) or white (W))
D - the race of the defendant (either black (B) or white (W))
C - verdict for capital punishment (yes (Y) or no (N))

MODEL 1

The GENMOD Procedure								
Model Information								
Distribution Poisson Link Function Log Dependent Variable count								
			Number	of Observa	tions Read	8		
			Number	of Observa	tions Used	8		
Class Level Information								
Class Levels Values								
V 2 B W								
D $2 \quad \mathrm{~B} \mathrm{~W}$								
C 20 N Y								
Criteria For Assessing Goodness Of Fit								
		ter			DF	Value	Value/DF	
		ian			4	402.8353	100.7088	
		led	eviance		4	402.8353	100.7088	
		rson	Chi-Square		4	419.5584	104.8896	
		led	earson X2		4	419.5584	104.8896	
		Li	lihood			2725.4956		
		1 L	Likelihood			-220.4376		
		(sm	ller is bet	ter)		448.8752		
		C	aller is be	tter)		462.2085		
			$l \mathrm{ler}$ is bet	ter)		449.1930		
Algorithm converged.								
Analysis Of Maximum Likelihood Parameter Estimates								
				Standard	Wald 95\%	Confidence	Wald	
Parameter		DF	Estimate	Error		imits	Chi-Square	Pr > ChiSq
Intercept		1	3.6172	0.1255	3.3713	3.8632	830.72	$<.0001$
V	B	1	-1.1753	0.0907	-1.3531	-0.9974	167.81	<. 0001
V	W	0	0.0000	0.0000	0.0000	0.0000	.	.
D	B	1	-0.9277	0.0855	-1.0953	-0.7602	117.81	$<.0001$
D	W	0	0.0000	0.0000	0.0000	0.0000	.	.
C	N	1	2.1874	0.1279	1.9367	2.4380	292.53	$<.0001$
C	Y	0	0.0000	0.0000	0.0000	0.0000	.	.
Scale		0	1.0000	0.0000	1.0000	1.0000		

(Question 2 continued)

MODEL 2

\qquad

The GENMOD Procedure

Model Information
Distribution
Poisson
Link Function Log
Dependent Variable count
Number of Observations Read 8
Number of Observations Used 8

Class		Level Information
Class	Levels	Values
V	2	B W
D	2	B W
C	2	N Y

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	3	22.2659	7.4220
Scaled Deviance	3	22.2659	7.4220
Pearson Chi-Square	3	19.7018	6.5673
Scaled Pearson X2	3	19.7018	6.5673
Log Likelihood		2915.7803	
Full Log Likelihood	-30.1529		
AIC (smaller is better)		70.3058	
AICC (smaller is better)		100.3058	
BIC (smaller is better)		70.7030	

Algorithm converged.

Parameter					Standard	Wald		Wald	Pr > ChiSq
			DF	Estimate	Error	Confidenc	e Limits	Chi-Square	
Intercept			1	3.8526	0.1239	3.6097	4.0955	966.09	<. 0001
V	B		1	-3.3737	0.2542	-3.8721	-2.8754	176.08	<. 0001
V	W		0	0.0000	0.0000	0.0000	0.0000		
D	B		1	-2.2751	0.1516	-2.5722	-1.9780	225.30	<. 0001
D	W		0	0.0000	0.0000	0.0000	0.0000	.	
C	N		1	2.1874	0.1279	1.9367	2.4380	292.53	<. 0001
C	Y		0	0.0000	0.0000	0.0000	0.0000		
V*D	B	B	1	4.4654	0.3041	3.8694	5.0614	215.64	<. 0001
$\mathrm{V} * \mathrm{D}$	B	W	0	0.0000	0.0000	0.0000	0.0000	.	
$\mathrm{V} * \mathrm{D}$	W	B	0	0.0000	0.0000	0.0000	0.0000	.	
$\mathrm{V} * \mathrm{D}$	W	W	0	0.0000	0.0000	0.0000	0.0000		

(Question 2 continued)

MODEL 3

The GENMOD Procedure

Model Information

Distribution	Poisson
Link Function	Log
Dependent Variable	count

Number of Observations Read	8
Number of Observations Used	8

Class		Level
Information		
Class	Levels	Values
V	2	B W
D	2	B W
C	2	N Y

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	2	5.3940	2.6970
Scaled Deviance	2	5.3940	2.6970
Pearson Chi-Square	2	5.8109	2.9054
Scaled Pearson X2	2	5.8109	2.9054
Log Likelihood		2924.2162	
Full Log Likelihood	-21.7170		
AIC (smaller is better)		55.4339	
AICC (smaller is better)		139.4339	
BIC (smaller is better)		55.9106	

Algorithm converged.

(Question 2 continued)

MODEL 4

Analysis Of Maximum Likelihood Parameter Estimates

Parameter				Standard		Wald 95\%		Wald	
			DF	Estimate	Error	Confiden	Limits	Chi-Square	Pr > ChiSq
Intercept			1	3.9668	0.1374	3.6976	4.2361	833.78	<. 0001
V	B		1	-5.6696	0.6459	-6.9355	-4.4037	77.06	$<.0001$
V	W		0	0.0000	0.0000	0.0000	0.0000	.	.
D	B		1	-1.5525	0.3262	-2.1918	-0.9132	22.66	$<.0001$
D	W		0	0.0000	0.0000	0.0000	0.0000	.	.
C	N		1	2.0595	0.1458	1.7736	2.3453	199.40	$<.0001$
C	Y		0	0.0000	0.0000	0.0000	0.0000	.	.
$\mathrm{V} * \mathrm{D}$	B	B	1	4.5950	0.3135	3.9805	5.2095	214.78	$<.0001$
$\mathrm{V} * \mathrm{D}$	B	W	0	0.0000	0.0000	0.0000	0.0000	.	.
$\mathrm{V} * \mathrm{D}$	W	B	0	0.0000	0.0000	0.0000	0.0000	.	.
$\mathrm{V} * \mathrm{D}$	W	W	0	0.0000	0.0000	0.0000	0.0000	.	.
D*C	B	N	1	-0.8678	0.3671	-1.5872	-0.1483	5.59	0.0181
D*C	B	Y	0	0.0000	0.0000	0.0000	0.0000	.	.
D*C	W	N	0	0.0000	0.0000	0.0000	0.0000	.	.
D*C	W	Y	0	0.0000	0.0000	0.0000	0.0000	.	.
$\mathrm{V} * \mathrm{C}$	B	N	1	2.4044	0.6006	1.2273	3.5816	16.03	$<.0001$
$\mathrm{V} * \mathrm{C}$	B	Y	0	0.0000	0.0000	0.0000	0.0000	.	.
V*C	W	N	0	0.0000	0.0000	0.0000	0.0000	.	.
$\mathrm{V} * \mathrm{C}$	W	Y	0	0.0000	0.0000	0.0000	0.0000	-	-

(Question 2 continued)

(a) (4 marks) For each of the 4 models for which output is given, give a practical interpretation of the relationships among the variables (assuming that the model is appropriate).
(b) (4 marks) Show how the value for the "Full Log Likelihood" is calculated for model 1. Give your answer in terms of the observed counts $y_{i j k}$.
(c) (1 mark) For model 1, explain why the degrees of freedom for the "Criteria For Assessing Goodness Of Fit" is 4.
(d) (5 marks) Use a likelihood ratio test to compare the fits of models 1 and 3. State the null and alternative hypotheses, the test statistic, the distribution of the test statistic under the null hypothesis, the p-value, and your conclusion.
(e) (4 marks) Carry out the Deviance Goodness-of-Fit test for model 3. State the null and alternative hypotheses, the test statistic, the distribution of the test statistic under the null hypothesis, the p-value, and your conclusion.
(Question 2 continued)
(f) (2 marks) Using model 4 , what is the estimated count of the number of cases with a verdict of capital punishment for which the defendant and victim were both white?
(g) (3 marks) Using model 4, estimate the odds of receiving a verdict in favour of capital punishment if the defendant was black.
(h) (4 marks) For model 4, what evidence is available from the SAS output that the model is adequate? What else would you like to see to ensure that the Wald tests are appropriate?
(i) (2 marks) Which of the 4 models would you choose for these data? Why?
3. Below is some additional output analysing the data from question 2. nCapital is the number of cases for which the verdict was for capital punishment.

MODEL A

\left.	The LOGISTIC Procedure	
Model Information		$\right]$.

Response Profile		
Ordered	Binary	Total
Value	Outcome	Frequency
1	Event	68
2	Nonevent	606
Class		Level
Class	Value	Design
Clation		
V	B	1
	W	0
D	B	1

Model Convergence Status
Quasi-complete separation of data points detected.
WARNING: The maximum likelihood estimate may not exist.
WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable.

	Model Fit Statistics		
	Intercept	Intercept	
	and		
	Criterion	Only	Covariates

Output for MODEL A continues on the next page.

(Question 3 continued)

Output for MODEL A continued

MODEL B

Output for MODEL B continues on the next page.
(Question 3 continued)

Output for MODEL B continued

(a) (4 marks) Give test statistics and p-values for two tests comparing models A and B. What do you conclude? (As part of your conclusion, you should be choosing one of model A or B.)
(Question 3 continued)
(b) (2 marks) For the model you chose in part (a), describe the relationship among the 3 variables.
(c) (2 marks) Using model B, estimate the odds of receiving a verdict in favour of capital punishment if the defendant and victim were both black.
(d) (2 marks) The SAS output for model A includes the message below. Explain what the message indicates.

```
    Quasi-complete separation of data points detected.
    WARNING: The maximum likelihood estimate may not exist.
    WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown
        are based on the last maximum likelihood iteration. Validity of the model fit is
        questionable.
```

(e) (2 marks) For model A, what are the hypotheses for the likelihood ratio test under the heading "Testing Global Null Hypothesis: BETA=0" in the SAS output? What do you conclude?
(f) (2 marks) Do you prefer the analysis carried out on these data in question 2 or question 3? Why?
4. A study followed the orthodontic growth of 27 children (16 males and 11 females). At ages $8,10,12$, and 14 , the distance (in millimeters) from the center of the pituitary to pterygomaxillary fissure was measured. The investigators were interested in how the growth of this distance varied as the boys and girls grew. In the analysis below, age was treated as a categorical variable.
Some SAS output is given below for 3 models that were fit to the resulting data.

MODEL I

Output for MODEL I continues on the next page.
(Question 4 continued)

Output for MODEL I continued

Estimated R Correlation Matrixr subject (sex) F01 Female				
Row	Col1	Col2	Col3	Col4
1	1.0000	0.6245	0.6245	0.6245
2	0.6245	1.0000	0.6245	0.6245
3	0.6245	0.6245	1.0000	0.6245
4	0.6245	0.6245	0.6245	1.0000
Covariance Parameter Estimates				
	Cov Parm	Subject	Estimate	
	CS	subject(sex)	3.2854	
	Residual		1.9750	

Fit Statistics
-2 Res Log Likelihood 423.4
AIC (smaller is better) 427.4
AICC (smaller is better) 427.5 BIC (smaller is better) 430.0

Null Model Likelihood Ratio Test

DF	Chi-Square	Pr $>$ ChiSq

Type 3 Tests of Fixed Effects Num Den

	Typer			
	Num	Den		
Effect	DF	DF	F Value	Pr $>$ F
age	3	75	35.35	$<.0001$
sex	1	25	9.29	0.0054
age*sex	3	75	2.36	0.0781

(Question 4 continued)

MODEL II

(The output was edited to remove Class Level Information and Number of Observations (both same as model I) and Iteration History (convergence criteria were met).)

(Question 4 continued)

MODEL III

(The output was edited to remove Class Level Information and Number of Observations (both same as models I and II) and Iteration History (convergence criteria were met).)

Me Mixed Procedure	
	Model
Information	
Dependent Variable	distance
Covariance Structure	Unstructured
Subject Effect	subject(sex)
Estimation Method	REML
Residual Variance Method	None
Fixed Effects SE Method	Model-Based
Degrees of Freedom Method	Between-Within

Dimensions
Covariance Parameters 10
Columns in X 15
Columns in Z 0
Subjects 27
Max Obs Per Subject 4
Estimated R Correlation Matrix
for subject (sex) F01 Female

Row	Col1	Col2	Col3	Col4
1	1.0000	0.5707	0.6613	0.5216
2	0.5707	1.0000	0.5632	0.7262
3	0.6613	0.5632	1.0000	0.7281
4	0.5216	0.7262	0.7281	1.0000

Fit Statistics
-2 Res Log Likelihood 414.0
AIC (smaller is better) xxxxx
AICC (smaller is better) 436.5
BIC (smaller is better) 447.0

Null Model Likelihood Ratio Test
DF Chi-Square \quad Pr $>$ ChiSq
$9 \quad 56.46<.0001$

	Type 3 Tests of Fixed Effects			
	Num	Den		
Effect	DF	DF	F Value	Pr $>$ F
age	3	25	34.45	$<.0001$
sex	1	25	9.29	0.0054
age*sex	3	25	2.93	0.0532

(Question 4 continued)

(a) (1 mark) The models include the interaction of sex and age. Explain in practical terms why this was included in the models.
(b) (2 marks) The model was fit using the mixed models procedure in SAS. Explain why the model is "mixed".
(c) (4 marks) Write the model that was fit in model I, carefully defining all terms. (Do not write the fitted equation; write the model in terms of its parameters.)
(d) (2 marks) For model I, why is the number of covariance parameters equal to 2 ?

(Question 4 continued)

(e) (1 mark) What is the value of AIC for model III?
(f) (2 marks) $\mathrm{AR}(1)$ is a commonly used covariance structure in situations such as this, where observations are taken over time. Explain why it is not an appropriate covariance structure for these data by comparing at least 2 different kinds of information given in the SAS output.
(g) (2 marks) How do the conditions for valid inference for this model differ from the conditions needed for a multiple linear regression model?
5. (a) (6 marks) In order for inferences to be valid, conditions must be met. Assume standard analyses that were taught in this course are being carried out.
i. Give two examples of conditions that must be met for both analysis of variance and binomial logistic regression models in order for the inferences to be valid.
ii. Give two examples of conditions that must be met for the inferences to be valid for an analysis of variance model but which are not necessary for a binomial logistic regression model.
iii. Give two examples of conditions that must be met for the inferences to be valid for a binomial logistic regression model but which are not necessary for an analysis of variance model.
(b) (4 marks) Here are two recent quotes from lecture.
"What does it mean if you make predictions from a fitted model that does not adequately describe the data?"
"Only do inference on valid models."
Imagine it is sometime in the future and you have been hired to do the statistical analysis on the data collected from a scientific study. How will the ideas behind these quotes affect the work you will do? And why is this important?

TABLE B. 3 Percentiles of the χ^{2} Distribution.

Entry is $\chi^{2}(A ; \nu)$ where $P\left\{\chi^{2}(\nu) \leq \chi^{2}(A ; \nu)\right\}=A$										
	A									
ν	. 005	010	. 025	050	100	900	. 950	. 975	990	995
1	0.04393	0.03157	0.03982	0.02393	0.0158	2.71	3.84	5.02	6.63	7.88
2	0.0100	0.0201	0.0506	0.103	0.211	4.61	5.99.	7.38	9.21	10.60
3	0.072	0.115	0.216	0.352	0.584	6.25	7.81	9.35	11.34	12.84
4	0.207	0.297	0.484	0.711	1.064	7.78	9.49	11.14	13.28	14.86
5	0.412	0.554	0.831	1.145	1.61	924	11.07	12.83	15.09	16.75
6	0.676	0.872	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55
7	0.989	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67	23.59
10.	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.73	25.76
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14	31.32
15.	4.60	5.23	6.26	7.26	8.55	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.59	13.24	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	34.38	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	36.74	40.11	43.19	46.96	49.64
28	12.46	13.56	15.31	16.93	18.94	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	51.81	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	37.69	63.17	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	55.33	85.53	90.53	95.02	100.4	104.2
80	51.17	53.54	57.15	60.39	64.28	96.58	101.9	106.6	112.3	116.3
90	59.20	61.75	65.65	69.13	73.29	107.6	113.1	118.1	124.1	128.3
100	67.33	70.06	74.22	77.93	82.36	118.5	124.3	129.6	135.8	140.2

Some formulae:

Pooled t-test

$$
t_{o b s}=\frac{\bar{y}_{1}-\bar{y}_{2}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

Linear Regression

$$
b_{1}=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}}=\frac{\sum X_{i} Y_{i}-n \overline{X Y}}{\sum X_{i}^{2}-n \bar{X}^{2}}
$$

One-way analysis of variance

$$
\mathrm{SSTO}=\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2} \quad \mathrm{SSE}=\sum_{g=1}^{G} \sum_{(g)}\left(Y_{i}-\bar{Y}_{g}\right)^{2} \quad \mathrm{SSR}=\sum_{g=1}^{G} n_{g}\left(\bar{Y}_{g}-\bar{Y}\right)^{2}
$$

Bernoulli and Binomial distributions

$$
\begin{array}{cc}
\text { If } Y \sim \operatorname{Bernoulli}(\pi) & \text { If } Y \sim \operatorname{Binomial}(m, \pi) \\
\mathrm{E}(Y)=\pi, \operatorname{Var}(Y)=\pi(1-\pi) & \mathrm{E}(Y)=m \pi, \operatorname{Var}(Y)=m \pi(1-\pi)
\end{array}
$$

Logistic Regression with Binomial Response formulae
Deviance $=2 \sum_{i=1}^{n}\left\{y_{i} \log \left(y_{i}\right)+\left(m_{i}-y_{i}\right) \log \left(m_{i}-y_{1}\right)-y_{i} \log \left(\hat{y}_{i}\right)+\left(m_{i}-y_{i}\right) \log \left(m_{i}-\hat{y}_{1}\right)\right\}$

$$
\begin{gathered}
D_{\text {res }, i}=\operatorname{sign}\left(y_{i}-m_{i} \hat{\pi}_{i}\right) \sqrt{2\left\{y_{i} \log \left(\frac{y_{i}}{m_{i} \hat{\pi}_{i}}\right)+\left(m_{i}-y_{i}\right) \log \left(\frac{m_{i}-y_{i}}{m_{i}-m_{i} \tilde{\pi}_{i}}\right)\right\}} \\
P_{\text {res }, i}=\frac{y_{i}-m_{i} \hat{\pi}_{i}}{\sqrt{m_{i} \tilde{\pi}_{i}\left(1-\hat{\pi}_{i}\right)}}
\end{gathered}
$$

Multinomial distribution for 2×2 table
Poisson distribution
$\operatorname{Pr}(\mathbf{Y}=\mathbf{y})=\frac{n!}{y_{11}!y_{12}!y_{21}!y_{22}!} \pi_{11}^{y_{11}} \pi_{12}^{y_{12}} \pi_{21}^{y_{21}} \pi_{22}^{y_{22}}$

$$
\begin{gathered}
\operatorname{Pr}(Y=y)=\frac{\mu^{y} e^{-\mu}}{y!}, y=0,1,2, \ldots \\
\mathrm{E}(Y)=\mu, \operatorname{Var}(Y)=\mu
\end{gathered}
$$

Two-way contingency tables (easily generalizable to three-way tables)

$$
\begin{gathered}
X^{2}=\sum_{j=1}^{J} \sum_{i=1}^{I} \frac{\left(y_{i j}-\hat{\mu}_{i j}\right)^{2}}{\hat{\mu}_{i j}} \\
D_{r e s, i j}=\operatorname{sign}\left(y_{i j}-\hat{\mu}_{i j}\right) \sqrt{2\left\{y_{i j} \log \left(\frac{y_{i j}}{\hat{\mu}_{i j}}\right)-y_{i j}+\hat{\mu}_{i j}\right\}} \\
P_{r e s, i j}=\frac{y_{i j}-\hat{\mu}_{i j}}{\sqrt{\hat{\mu}_{i j}}}
\end{gathered}
$$

Model Fitting Criteria

$$
\mathrm{AIC}=-2 \log (L)+2 p
$$

$$
\mathrm{SC}=-2 \log (L)+p \log (N)
$$

