October 24, 2007

LAST NAME:
SOLUTIONS
FIRST NAME: \qquad

STUDENT NUMBER:

ENROLLED IN: (circle one) STA 302 STA 1001

INSTRUCTIONS:

- Time: 90 minutes
- Aids allowed: calculator.
- A table of values from the t distribution is on the last page (page 8).
- Total points: 50

Some formulae:

$$
\begin{array}{cc}
b_{1}=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}}=\frac{\sum X_{i} Y_{i}-n \overline{X Y}}{\sum X_{i}^{2}-n \bar{X}^{2}} & b_{0}=\bar{Y}-b_{1} \bar{X} \\
\operatorname{Var}\left(b_{1}\right)=\frac{\sigma^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}} & \operatorname{Var}\left(b_{0}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right) \\
\operatorname{Cov}\left(b_{0}, b_{1}\right)=-\frac{\sigma^{2} \bar{X}}{\sum\left(X_{i}-\bar{X}\right)^{2}} & \mathrm{SSTO}=\sum\left(Y_{i}-\bar{Y}\right)^{2} \\
\mathrm{SSE}=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2} & \mathrm{SSR}=b_{1}^{2} \sum\left(X_{i}-\bar{X}\right)^{2}=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2} \\
\sigma^{2}\left\{\hat{Y}_{h}\right\}=\operatorname{Var}\left(\hat{Y}_{h}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right) & \sigma^{2}\{\text { pred }\}=\operatorname{Var}\left(Y_{h}-\hat{Y}_{h}\right)=\sigma^{2}\left(1+\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right) \\
r=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2} \sum\left(Y_{i}-\bar{Y}\right)^{2}}} & \text { Working-Hotelling coefficient: } W=\sqrt{2 F_{2, n-2 ; \alpha}}
\end{array}
$$

1	2 a	2 bcdef	2 ghi	2 j	3

1. The following questions require derivations of results for the simple linear regression model.
(a) (2 marks) In lecture we showed that $\sum_{i=1}^{n} e_{i}=0$ and $\sum_{i=1}^{n} e_{i} X_{i}=0$. Given these results, what is $\sum_{i=1}^{n} e_{i} \hat{Y}_{i}$? Justify your answer.

$$
\begin{aligned}
\sum_{i=1}^{n} e_{i} \hat{Y}_{i} & =\sum_{i=1}^{n} e_{i}\left(b_{0}+b_{1} X_{i}\right) \\
& =b_{0} \sum_{i=1}^{n} e_{i}+b_{1} \sum_{i=1}^{n} e_{i} X_{i} \\
& =0
\end{aligned}
$$

(b) (5 marks) Show that the total Sum of Squares in a regression can be decomposed as

$$
\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

You may use any results that were derived in lecture.

$$
\begin{aligned}
S S T O & =\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \\
& =\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}+\hat{Y}_{i}-\bar{Y}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}+2 \sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)\left(Y_{i}-\hat{Y}_{i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)\left(Y_{i}-\hat{Y}_{i}\right) & =\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right) e_{i} \\
& =\sum_{i=1}^{n} e_{i} \hat{Y}_{i}-\bar{Y} \sum_{i=1}^{n} e_{i}=0
\end{aligned}
$$

So SSTO $=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$
(c) (5 marks) Assume that the X_{i} are non-random. Derive the formula for $\operatorname{Cov}\left(b_{0}, b_{1}\right)$ given on the first page. You may use any other formulae from the first page that you require except the formulae whose derivations require knowing $\operatorname{Cov}\left(b_{0}, b_{1}\right)$.
(Hint: You may want to start with the formula for the estimated intercept.)
From the formula for $b_{0}: \bar{Y}=b_{0}+b_{1} \bar{X}$
So

$$
\begin{aligned}
\operatorname{Var}(\bar{Y}) & =\operatorname{Var}\left(b_{0}\right)+\bar{X}^{2} \operatorname{Var}\left(b_{1}\right)+2 \bar{X} \operatorname{Cov}\left(b_{0}, b_{1}\right) \\
\frac{\sigma^{2}}{n} & =\sigma^{2}\left(\frac{1}{n}+\frac{\bar{X}^{2}}{S_{X X}}\right)+\bar{X}^{2} \frac{\sigma^{2}}{S_{X X}}+2 \bar{X} \operatorname{Cov}\left(b_{0}, b_{1}\right)
\end{aligned}
$$

Rearranging gives $\operatorname{Cov}\left(b_{0}, b_{1}\right)=-\frac{\sigma^{2} \bar{X}}{S_{X X}}$ where $S_{X X}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
2. The SAS output that follows was produced to examine the relationship between full-scale IQ (FSIQ) and brain size as measured by MRI (MRIcount). Measurements were taken on 20 university students chosen because their full-scale IQ was at least 130 .

	The REG Procedure Descriptive Statistics				Standard
			Uncorrected		
Variable	Sum	Mean	SS	Variance	Deviation
Intercept	20.00000	1.00000	20.00000	0	0
MRIcount	18518961	925948	1.725648 E 13	5730703420	75701
FSIQ	2728.00000	136.40000	372396	15.62105	3.95235

(a) (5 marks) Give estimates of the following quantities:
the percent of total variability in FSIQ that is explained by its
linear relationship with MRIcount $\quad \underline{30.06 \%}$
the FSIQ for a person whose MRIcount is 1,000,000 $\underline{138.5}$
the error variance $\underline{11.532}$
the variance of the slope $\underline{1.06 \times 10^{-10}}$
the difference in FSIQ between 2 people when the second person
has MRIcount that is 10,000 units larger than the first person $\underline{0.286}$
(Question 2 continued.)
(b) (2 marks) Explain the practical meaning of the estimated intercept.

It has no practical meaning in this context because an MRIcount of 0 is impossible.
(c) (2 marks) Give a 95% confidence interval for the slope.
$t_{18, .025}=2.101$
CI: $0.00002863 \pm 2.101(0.00001029)=(0.00000701,0.0000502)$
(d) (1 mark) What are the null and alternative hypotheses for the test with p-value of 0.0123 ?
$H_{0}: \beta_{1}=0$ versus $H_{a}: \beta_{1} \neq 0$
(e) (3 marks) The p-value of 0.0123 appears twice in the SAS output. Explain clearly how the test statistics are related for these data and show that this relationship holds for all simple linear regressions.

The test statistics are $t_{o b s}=2.78$ and $F_{\text {obs }}=7.74$ and $2.78^{2}=7.74$ (within roundoff error)
In general,

$$
t_{o b s}^{2}=\left(\frac{b_{1}}{\text { s.e. of } b_{1}}\right)^{2}=\left(\frac{b_{1}}{\sqrt{M S E / S_{X X}}}\right)^{2}=\frac{b_{1}^{2} S_{X X}}{M S E}=\frac{S S R}{M S E}=F_{o b s}
$$

(f) (4 marks) Calculate a 90% interval estimate of FSIQ for an additional student whose MRIcount is $1,025,948$.
$F \hat{S} I Q=109.89+0.0000286(1025948)=139.27$
$S_{X X}=(n-1) s_{X}^{2}=19(5730703420)=108883364980$
$t_{18, .05}=1.734$
PI: $139.37 \pm 1.734(3.396) \sqrt{1+\frac{1}{20}+\frac{(1025948-925948)^{2}}{108883364980}}=(132.97,145.56)$
(Question 2 continued.)
(g) (2 marks) In addition to the student considered in part (f), suppose we also need an interval estimate of FSIQ for another student who has an MRIcount of 825,948 . For these two intervals, a simultaneous confidence level of 90% is required. How should the interval for the student considered in part (f) be adjusted to take into account the fact that you are now interested in two additional students? (Note that you do not need to calculate anything for the second additional student and you do not need to re-calculate the interval from part (f), just explain how it would change.)

Use the Bonferroni method; that is, make each interval at confidence level 95\%. So the only adjustment necessary is to substitute $t_{18, .05}$ with $t_{18, .025}=2.101$.
(h) (3 marks) Explain clearly what it means for the intervals discussed in part (g) to be "simultaneous".

In repeated samples of 20 students with the prediction intervals re-calculated for each sample, at least 90% of the pairs of prediction intervals will both capture the actual FSIQ of the 2 additional students.
(i) (5 marks) The following is a plot of the residuals versus the predicted values.

What assumptions can be evaluated from this plot? What do you conclude?
Assumptions:

- linear model is appropriate (no curvature, outliers, influential points)
- variance is constant

Both of these assumptions appear to be satisfied.

(Question 2 continued.)

(j) Suppose the data were collected for 40 students, 20 with high IQs and 20 with low IQs and suppose the scatterplot of FSIQ versus MRIcount for all 40 observations looks like the following plot.

A regression line is fit to these 40 points.
i. (2 marks) Explain why you would expect a high R^{2}.

There is lots of variation in the Y's, particularly between the two groups. But a regression line (which will roughly connect the centres of the 2 groups) accounts for much of it.
ii. (3 marks) In fact, R^{2} for the 40 observations in this plot is 85%. Considering only this fact and the plot above, is this evidence of a strong linear relationship between FSIQ and MRIcount? Why or why not? Is there any additional information you would like?

It is not evidence of a strong linear relationship as the line just connects the 2 clumps of points and may not fit either clump well.
I'd like to see a separate regression line fit to each group and evaluate each of them for fit.
3. (6 marks (2 each)) For each of the following statements regarding simple linear regression, state whether you agree or disagree. Briefly explain your choice.
(a) 95% confidence limits for an intercept were constructed in a regression analysis for a study. The confidence interval may be interpreted as follows: If we were able to repeat the study and the corresponding analysis a large number of times with the same sample size, we would expect that 95% of the resulting estimated intercepts would fall in the original confidence interval.

DISAGREE
We expect that 95% of the confidence intervals will include the true (unknown) intercept.
(b) The sample mean of the residuals always equals the true mean of the error term.

AGREE
The true mean of the errors is $E(\epsilon)=0$ and we have shown that $\sum_{i=1}^{n} e_{i}=0$ so $\bar{e}=0$.
(c) For the least squares method to be valid, the error terms ϵ_{i} must be normally distributed with mean zero and common variance σ^{2}.

DISAGREE
For least squares the only assumption is that the relationship is linear.

