## **STA 302 / 1001 F - Fall 2006 Test 2** November 22, 2006

| LAST NAME:                                                                                 | FIRST   | NAME:    |  |  |  |
|--------------------------------------------------------------------------------------------|---------|----------|--|--|--|
| STUDENT NUMBER:                                                                            |         |          |  |  |  |
| ENROLLED IN: (circle one)                                                                  | STA 302 | STA 1001 |  |  |  |
| <ul><li>INSTRUCTIONS:</li><li>Time: 90 minutes</li><li>Aids allowed: calculator.</li></ul> |         |          |  |  |  |

- A table of values from the t distribution is on the second to last page (page 7).
- A table of formulae is on the last page (page 8).
- For all questions you can assume that the formulae on page 8 are known.
- Total points: 40

| 1 | 2ab | 2cde | 2f,3 | 4 |
|---|-----|------|------|---|
|   |     |      |      |   |

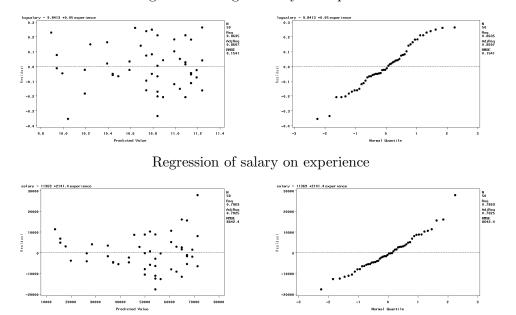
- 1. For the multiple linear regression model  $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ , assume **X** is non-random.
  - (a) (3 marks) Assume the Gauss-Markov assumptions hold. Show that the variance-covariance matrix of **b**, the least squares estimates of  $\beta$  is  $\sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$ .

(b) (2 marks) Why is the matrix **H** given that letter as its name?

- (c) We will now generalize the multiple linear model to include the case where the variancecovariance matrix of  $\boldsymbol{\epsilon}$  is the  $n \times n$  matrix  $\boldsymbol{\Sigma}$  (without restriction on  $\boldsymbol{\Sigma}$  except that it is a valid variance-covariance matrix). We will still assume that  $E(\boldsymbol{\epsilon}) = \mathbf{0}$ . To obtain the genalized least squares estimate, the quantity  $(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'\boldsymbol{\Sigma}^{-1}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$  is minimized with respect to  $\boldsymbol{\beta}$ .
  - i. (4 marks) Show that the generalized least squares estimate is  $\mathbf{b} = (\mathbf{X}' \mathbf{\Sigma}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{\Sigma}^{-1} \mathbf{Y}$ .

ii. (2 marks) In this case  $\mathbf{H} = \mathbf{X} (\mathbf{X}' \mathbf{\Sigma}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{\Sigma}^{-1}$ . Show that  $\mathbf{H}$  is idempotent.

2. The data considered in this question are the salaries in dollars and years of experience for a sample of 50 social workers. Some SAS output from a regression of the natural logarithm of salary on experience follows:


## The REG Procedure Descriptive Statistics

|              |           |        |             | Uncorrec | cted     |       |        | St   | andard |
|--------------|-----------|--------|-------------|----------|----------|-------|--------|------|--------|
| Variable     | S         | um     | Mean        |          | SS       | Vari  | ance   | Dev  | iation |
| Intercept    | 50.000    | 00     | 1.00000     | 50.00    | 0000     |       | 0      |      | 0      |
| experience   | 906.000   | 00     | 18.12000    | 19       | 9304     | 58.9  | 2408   | 7    | .67620 |
| logsalary    | 537.346   | 75     | 10.74694    | 5783.18  | 3290     | 0.1   | 7045   | 0    | .41286 |
|              |           | Depend | lent Variab | le: logs | salarv   |       |        |      |        |
|              | Num       | -      | Observatio  | 0        | Jurury   | 50    |        |      |        |
|              |           |        | Observatio  |          |          | 50    |        |      |        |
|              | i din     |        | 0000114010  | 110 000u |          | 00    |        |      |        |
|              |           | I      | Analysis of | Variand  | ce       |       |        |      |        |
|              |           |        | Sum         | of       | М        | ean   |        |      |        |
| Source       |           | DF     | Squar       | es       | Squ      | are   | F Valu | le   | Pr > F |
| Model        |           | 1      | 7.212       | 15       | 7.21     | 215   | 303.6  | 35   | <.0001 |
| Error        |           | 48     | 1.140       | 06       | 0.02     | 375   |        |      |        |
| Corrected To | tal       | 49     | 8.352       | 20       |          |       |        |      |        |
|              | Root MSE  |        | 0.154       | 11 R-    | -Square  | 0     | .8635  |      |        |
|              | Dependent | Mean   | 10.746      |          | ij R-Sq  |       | .8607  |      |        |
|              | Coeff Var | noun   | 1.434       |          | .j 10 54 | Ũ     |        |      |        |
|              |           |        | 1.101       |          |          |       |        |      |        |
|              |           |        | Parameter   | Estimate | es       |       |        |      |        |
|              |           | Pai    | rameter     | Stand    | lard     |       |        |      |        |
| Variable     | e DF      | Es     | stimate     | Er       | ror      | t Val | ue F   | °r > | t      |
| Interce      | pt 1      | ç      | 9.84132     | 0.05     | 5636     | 174.  | 63     | <.0  | 001    |
| experie      | nce 1     | (      | 0.04998     | 0.00     | )287     | 17.   | 43     | <.0  | 001    |

(a) (2 marks) Interpret the meaning of the slope in terms of the original variables.

 (b) (5 marks) Estimate the number of years of experience for a social worker who makes \$35,000. Put a 95% interval around your estimate.

- (c) (2 marks) The distribution of years of experience has a lighter left tail than a normal distribution. How does this affect your interval in part (b)? Explain.
- (d) (4 marks) Below are 2 residual plots for the regression above, and 2 residual plots for the regression on the untransformed data. Based on these plots, which model do you prefer and why?



Regression of log of salary on experience

(e) (2 marks) Why do the values on the left and right ends of the normal quantile plot deserve more attention than the centre when looking at normal quantile plots?

(f) (4 marks) Also recorded for the social workers was the number of people they supervise. Below is some SAS output for the regression of log of salary on years of experience and number of people supervised.

| Parameter Estimates |    |           |          |         |         |
|---------------------|----|-----------|----------|---------|---------|
|                     |    | Parameter | Standard |         |         |
| Variable            | DF | Estimate  | Error    | t Value | Pr >  t |
| Intercept           | 1  | 9.84548   | 0.06138  | 160.40  | <.0001  |
| experience          | 1  | 0.05095   | 0.00608  | 8.38    | <.0001  |
| supervise           | 1  | -0.00189  | 0.01040  | -0.18   | 0.8566  |

Interpret the meaning of the coefficient of supervise and the meaning of the corresponding p-value.

3. (3 marks) Find the variance stabilizing transformation of Y if  $E(Y) = \mu$  and Var(Y) is proportional to  $\mu^4$ .

4. (a) (4 marks) Some data analysts prefer to use semi-studentized residuals instead of the raw residuals in plots. Explain how the interpretations of the plot of the residuals versus predicted values and of the normal quantile plot change when semi-studentized residuals are used.

(b) (3 marks) Consider a simple linear regression with non-random X. It could be argued that the assumption of normality could be assessed by evaluating a normal quantile plot of the Y's, rather than the residuals. Is this a reasonable approach? Why or why not?