STA 302 / 1001 H1F – Fall 2006 Test 1 October 18, 2006

LAST NAME:	FIRST NA	AME:
STUDENT NUMBER:		
ENROLLED IN: (circle one)	STA 302	STA 1001

INSTRUCTIONS:

- Time: 90 minutes
- Aids allowed: calculator.
- A table of values from the t distribution is on the last page (page 7).
- Total points: 50

Some formulae:

$$b_{1} = \frac{\sum(X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum(X_{i} - \overline{X})^{2}} = \frac{\sum X_{i}Y_{i} - n\overline{X}\overline{Y}}{\sum X_{i}^{2} - n\overline{X}^{2}} \qquad b_{0} = \overline{Y} - b_{1}\overline{X}$$

$$\operatorname{Var}(b_{1}) = \frac{\sigma^{2}}{\sum(X_{i} - \overline{X})^{2}} \qquad \operatorname{Var}(b_{0}) = \sigma^{2}\left(\frac{1}{n} + \frac{\overline{X}^{2}}{\sum(X_{i} - \overline{X})^{2}}\right)$$

$$\operatorname{Cov}(b_{0}, b_{1}) = -\frac{\sigma^{2}\overline{X}}{\sum(X_{i} - \overline{X})^{2}} \qquad \operatorname{SSTO} = \sum(Y_{i} - \overline{Y})^{2}$$

$$\operatorname{SSE} = \sum(Y_{i} - \hat{Y}_{i})^{2} \qquad \operatorname{SSR} = b_{1}^{2}\sum(X_{i} - \overline{X})^{2} = \sum(\hat{Y}_{i} - \overline{Y})^{2}$$

$$\sigma^{2}\{\hat{Y}_{h}\} = \operatorname{Var}(\hat{Y}_{h}) = \sigma^{2}\left(\frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{\sum(X_{i} - \overline{X})^{2}}\right) \qquad \sigma^{2}\{\operatorname{pred}\} = \operatorname{Var}(Y_{h} - \hat{Y}_{h}) = \sigma^{2}\left(1 + \frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{\sum(X_{i} - \overline{X})^{2}}\right)$$

$$r = \frac{\sum(X_{i} - \overline{X})(Y_{i} - \overline{Y})^{2}}{\sqrt{\sum(X_{i} - \overline{X})^{2}\sum(Y_{i} - \overline{Y})^{2}}$$

1	2ab	2cdef	2gh	3

1. A simple linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

is fit using least squares to n data points. Assume that the Gauss-Markov conditions hold and that the error terms are normally distributed with mean 0 and variance σ^2 .

- (a) (3 marks) What is the probability distribution of b_1 ? What is the probability distribution of β_1 ?
- (b) (4 marks) Describe the method of least squares. How is it related to R^2 ?

(c) (3 marks) Suppose the regression model is being used to predict blood pressure as a function of weight. Explain the difference between a confidence interval for the mean response at a new X and a prediction interval at a new X in this context. (Do not discuss the details of the formulae for calculating the intervals.)

(d) (2 marks) Is the correlation between blood pressure and weight meaningful in a practical manner? Why or why not?

2. To calibrate a measurement technique, researchers use a set of known X's (determined in advance by the researchers) to obtain observed Y's, then fit a model with Y as the dependent variable and X as the independent variable. This model can be used to convert future measured Y's back into the corresponding X's. The data in this exercise were collected for the calibration process of a technique designed to detect the quantity of calcium in a sample of material. X is the known quantity of calcium in each sample of material, Y is the amount of calcium measured by the technique being calibrated.

Some output from SAS is given below. Note that some numbers have been replaced by letters.

			The REG H	Procedui	re				
			Dependent V	/ariable	е: у				
			Analysis d	of Varia	ance				
			Sur	n of	1	lean			
Source		DF	Squa	ares	Squ	lare	F Va	lue	Pr > F
Model		1	1077.24	1294	1077.24	1294	(A)		<.0001
Error		7	0.33	3928	0.04	1847			
Corrected Tot	al	8	(B))					
	Root MSE		0.22	2016	R-Square	Э	(C)		
	Dependent	Mean	25.25	5556	Adj R-So	9	0.9996	5	
	Coeff Var		0.87	7171	-	-			
			Parameter	Estimat	ces				
		Pa	rameter	Star	ndard				
Variable	DF	E	stimate	I	Error	t Val	lue	Pr >	t
Intercep	ot 1	-	0.19487	((D)	-1	.05	0.3	3292
x	1		0.99373	0.0	0667	149	.08	<.0	0001
x x	rt 1 1	-	0.19487 0.99373	0.0	(D) 00667	-1 149	.05 .08	0.3	8292 0001

(a) (4 marks) Find the 4 missing values (A through D) in the SAS output.

(b) (4 marks) Find a 99% confidence interval for the slope. Explain clearly how to interpret the confidence interval.

(c) (3 marks) How would the *p*-value for the *t*-test of H_0 : $\beta_1 = 0$ versus H_a : $\beta_1 \neq 0$ change if the sample size were doubled? Justify your answer. You may assume that the new data values are similar to the original data.

(d) (5 marks) A 95% confidence interval for the mean of Y when X = 30 is (29.43, 29.80). Find a 95% prediction interval for the value of Y for a new sample with X = 30.

- (e) (2 marks) If there were no calcium present the technique should not detect any. Thus if X = 0, Y should also be 0. Do the data give evidence to support this? Justify your answer.
- (f) (3 marks) If the technique is any good at all, then the slope in the simple linear regression should be 1. Do the data give evidence to support this? Justify your answer using an appropriate hypothesis test.

(g) A scatterplot of the original data is given below. (Not all points are visible because some are close together.) Later, a new measurement is taken for a sample with a very small quantity of calcium. The second scatterplot below includes the original data and this new measurement.

- i. (2 marks) A simple linear regression model is fit to the data in the second scatterplot. How will the values of the slope and R^2 compare to the corresponding values from the regression fit to the original data?
- ii. (2 marks) Since the fitted regression equation changes when this new point is added to the data, what would you recommend the researchers do to model these data?

(h) (2 marks) Since the goal of the researchers is to be able to predict the quantity of calcium that is actually in the sample (what we've labelled X) given what the technique measures (what we've labelled Y), it is proposed that the regression be carried out with X as the dependent variable and Y as the independent variable. Comment briefly on how this proposal should be carried out and how the resulting regression equation would compare to the original. (Consider the original data values only for this question.)

3. In the previous question, it could be argued that the model should be forced through the origin because when X = 0, Y must necessarily be 0. Then the model would reduce to

$$Y_i = \beta X_i + \epsilon_i, \ i = 1, \dots, n$$

As in the previous question, assume the X_i 's are known values set by the researchers, and that the usual assumptions for the normal errors regression model apply.

(a) (3 marks) For this model, show that the least squares estimate of β is

$$\hat{\beta} = \frac{\sum X_i Y_i}{\sum X_i^2}$$

(b) (4 marks) Show that the estimate of β in part (a) is unbiased. What assumptions do you need to impose on the model to do this?

(c) (4 marks) Find the variance of the estimate of β from part (a). What assumptions do you need for this derivation?

	and a second	III IO SHITT	e t Distril	oution.	024 			TABL	E B.2 (c	pucluded	Percei	tiles of t	he t Distr	ibution.		
		Entry is t	(A; v) whe	re P {r(ν) ≤	{(a :V)1 5	= A										
			\sim	-												
[1 (A; 2)					_							
				V									¥	1000		
2	09	.70	.80	.85	66	56.	976		<u> </u>	98	.985	66	.9925	566.	3075	66.
-	ACE O	0.277	1 140						1 15	.895 2	1.205	31.821	42.434	63.657	127.322	636.
• ~	0 289	171.0	0/5.1	1,963	3.078	6.314	12.706		4	840	5.643	6.965	8.073	9.925	14.089	31.
. –	0.277	0.584	100.1	085-1	1.536	2.920	4,303		en •	.482	3.896	4.541	5.047	5.841	7.453	сi °
4	0.271	0.569	0.941	1.190	1.533	CCC-4	2.182		4 C 4 V	101	2.000	347.5	3 614	40074	04C.C	6 ve
ŝ	0.267	0.559	0.920	1.156	1.476	2.015	2.571		4 1 1 1				5	ino-t		Ś
9	0.265	0.553	0 006	134	1 440				0 i 0	-612	2.829	3.143	3.372	3.707	4.317	vý (
2	0.263	0.549	0.896	611.1	1415	208 1	2.47		- or	010	CI1-2	2.998	3.005	2.499	470.4 2 623 5	ri v
~ ~	0.262	0.546	0.889	1.108	1.397	1.860	2.306		1 01	398	2.574	2.821	2.998	3.250	3.690	: ব
	0.261	650	0.883	1.100	1.383	1.833	2.262		10	359	2.527	2.764	2.932	3.169	3.581	4
	0.400	740.0	0.679	1.093	1.372	1.812	2.228		-	328	194 0	2 718	2 870	3 106	1947	-3
	0.260	0.540	0.876	1.088	1.363	967.1	2.201		10	303	2.461	2.681	2.836	3.055	3.428	4
4 m	0.250	95C-0	0.873	1.083	1.356	1.782	2.179	83	1	.282	2.436	2.650	2.801	3.012	3.372	4
, 1	0.258	155.0	0/070	1.076	035.1	177.1	2.160		ri . E	-264	2.415	2.624	2.771	2.977	3.326	4
5	0.258	0.536	0.866	1.074	(47) 145	1.762	2.145		15	.249	2.397	2.602	2.746	2.947	3.286	d
9	0.758	0 535	0 000	1 001			101-7		16 2	235	2.382	2.583	2.724	2.921	3.252	÷.
~	0.257	0.534	0 863	1,040	122.1	1.746	2.120	50		224	2.368	2.567	2.706	2.898	3.222	ri (
00	0.257	0.534	0.862	1 067	0122.1	92.1	2.110		20 1	-214 	2,250	2.552	2.089	2.8.2	161.5	n'r
	0.257	0.533	0.861	1.066	1.328	1.729	101-7		200	101	951 6	2 578	19916	2.001		ie
	107.0	EE2.0	0.860	1.064	1.325	1.725	2.086		-	100	000 6	919 6	4000		201.6	r
_	0.257	0.532	0.859	1.063	1.323	1 771	1 060			191	97677	0107	002 0	018 6		ń r
ci .	0.256	0.532	0.858	1.061	1.321	1 717	100.4		40	212	212 6	2 500	00910	218/02	2 MAG	18
	0.256	0.532	0.858	090'1	1.319	1.714	2 069		12	123	000 0	C07 C	2 620	LOL C	1001	i e
+ v	0.250	0.531	0.857	1.059	1.318	1.711	2.064		10	167	2.301	2.485	2.612	2,787	31.078	e,
7	00770	100.0	0.856	1.058	1.316	1.708	2.060		r 70	163	206 6	007 6	202 0	OFF C	21.067	
-	0.256	0.531	D.856	1.058	1.315	1.706	2.056		35	158	162 6	2.473	865 6	LLL C	1001	im
~ 0	907-0	0.531	0.855	1.057	1.314	1.703	2.052		88	.154	2.285	2.467	2.592	2,763	3.047	, ei
	00770	0000	0.855	1.056	1.313	1.701	2.048		29 29	.150	2.282	2.462	2.586	2.756	3,038	e,
_	0.256	UES U	0.854	1.055	1.311	1.699	2.045		30 2	.147	2.278	2.457	2.581	2.750	3.030	m
		NCC'0	0.834	CC0.1	1.310	1.697	2.042		10 2	EC4	7 250	7.423	2.542	2,704	2.971	3
	0.255	0.529	0.851	. 1.050	1.303	1.684	2.021		8	- 660	2.223	2.390	2.504	2.660	2.915	. ri
	10210	120.0	0.848	1.045	1.296	1.671	2 000		e	200	201 0	035 L	031. 5	1000	139.6	r
	- MC 7 11			The second se			20011		2	010	6.170	20017	2010-2	10.5	7:000	ŝ