UNIVERSITY OF TORONTO

Faculty of Arts and Science

DECEMBER EXAMINATIONS 2006

STA 302 H1F / STA 1001 HF

Duration - 3 hours

Aids Allowed: Calculator

LAST NAME: _____ SOLUTIONS _____ FIRST NAME: ____

STUDENT NUMBER: _____

• There are 20 pages including this page.

• The last page is a table of formulae that may be useful. For all questions you can assume that the results on the formula page are known.

 \bullet Tables of the t distribution can be found on page 17 and tables of the F distribution can be found on pages 18 and 19.

• Total marks: 95

1,2	3	4	5	6	7a	7bc	7de

7fg	$7\mathrm{hi}$	7j	8ab	8c	9ab	9cd

1. (5 marks) For each of the following models state whether its parameters can be estimated using standard linear regression techniques. If linear regression can be used, what are the independent and dependent variables that should be used if using procreg in SAS?

(a) $Y_i = \beta_0 + e^{\beta_1 X_i} + \epsilon_i$

Cannot use linear regression.

(b) $Y_i = \frac{1}{\beta_0 + \beta_1 X_i + \epsilon_i}$

Can use linear regression. Dependent variable: $1/Y_i$. Independent variable: X_i .

(c) $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i$ where β_2 is known to be 5.

Can use linear regression. Dependent variable: $Y_i - 5X_{i2}$. Independent variable: X_{i1} .

2. (5 marks) A simple linear regression equation was fit to 10 observations. The following were calculated: $\sum_{i=1}^{10} (X_i - \overline{X})(Y_i - \overline{Y}) = 50$, $\sum_{i=1}^{10} (Y_i - \overline{Y})^2 = 100$, $R_{adj}^2 = 0.37$. Complete the analysis of variance table with the column headings: Source of variation, Degrees of freedom, Sum of squares, Mean square, F ratio, and p-value.

Source	DF	SS	MS	F	p-value
Model	1	100 - 56 = 44	44	44/7 = 6.286	$.025$
\underline{Error}	<u>8</u>	7 * 8 = 56	γ		
Total	g	100			
For MSE	$: R^2_{adj}$	= 0.37 = 1 - 91	MSE/1	100	

- 3. Let b_0 and b_1 be the estimated intercept and slope from the simple linear regression of Y on X using n observations. Let c_1 and c_2 be non-zero constants.
 - (a) (4 marks) Let b_0^* and b_1^* be the estimated intercept and slope from the simple linear regression of c_1Y on c_2X . Express b_0^* and b_1^* in terms of b_0 , b_1 , c_1 , and c_2 .

$$b_1^* = \frac{\sum c_2(X_i - \overline{X}) c_1(Y_i - \overline{Y})}{c_2^2 \sum (X_i - \overline{X})^2} = \frac{c_1}{c_2} b_1$$
$$b_0^* = c_1 \overline{Y} - b_1^* c_2 \overline{X} = c_1 (\overline{Y} - b_1 \overline{X}) = c_1 b_0$$

(b) (4 marks) What is the effect of scaling X and Y to c_2X and c_1Y respectively on the test of H_0 : $\beta_1 = 0$? Explain fully.

 $Var(b_1^*) = \frac{c_1^2}{c_2^2} Var(b_1)$ So the test statistic for the scaled regression is $\frac{\frac{c_1}{c_2}b_1}{\sqrt{\frac{c_1^2}{c_2^2}Var(b_1)}}$

i.e. it is exactly the same as for the regression with the original variables. The degrees of freedom are also the same for both regressions. So scaling has no effect on the test.

- 4. Consider the simple linear regression model $Y = \beta_0 + \beta_1 X + \epsilon$ with non-random X. Assume that the usual assumptions hold.
 - (a) (3 marks) Show that $b_1 = \frac{\sum (X_i \overline{X})(Y_i \overline{Y})}{\sum (X_i \overline{X})^2}$ is an unbiased estimator of β_1 . $b_1 = \frac{\sum X_i Y_i - n \overline{XY}}{\sum X_i^2 - n \overline{X}^2}$ (This is given on the formula sheet so doesn't have to be re-derived.)

$$E(b_1) = \frac{1}{\sum X_i^2 - n\overline{X}^2} \left[\sum X_i E(Y_i) - n\overline{X} E(\overline{Y}) \right]$$

$$= \frac{1}{\sum X_i^2 - n\overline{X}^2} \left[\sum X_i (\beta_0 + \beta_1 X_i) - n\overline{X} (\beta_0 + \beta_1 \overline{X}) \right]$$

$$= \frac{1}{\sum X_i^2 - n\overline{X}^2} \left[n\overline{X} \beta_0 + \beta_1 \sum X_i^2 - n\overline{X} \beta_0 - n\beta_1 \overline{X}^2 \right]$$

$$= \beta_1$$

(b) (5 marks) Show that $E(MSR) = \sigma^2 + \beta_1^2 S_{XX}$ where $S_{XX} = \sum (X_i - \overline{X})^2$. Explain how this is related to the construction of the analysis of variance *F*-test.

$$E(MSR) = E(SSR/1) = E(b_1^2 S_{XX})$$

= $S_{XX} \left[Var(b_1) + (E(b_1))^2 \right]$
= $S_{XX} \left[\frac{\sigma^2}{S_{XX}} + \beta_1^2 \right]$
= $\sigma^2 + \beta_1^2 S_{XX}$

The null hypothesis for the ANOVA F-test is $\beta_1 = 0$. So when H_0 is true, $E(MSR) = \sigma^2$.

The F-test statistic is MSR/MSE where both numerator and denominator are estimates of σ^2 under H_0 . Large values of the test statistic are associated with large (in absolute value) values of β_1 .

5. Consider a model for regression through the origin $Y_i = \beta_1 X_i + \epsilon_i$ in which the ϵ 's are independent and $\epsilon_i \sim N(0, \sigma^2 X_i)$. A possible solution to the non-constant variance is to use "weighted" least squares. In weighted least squares, the estimate of β_1 is obtained by minimizing

$$Q = \sum_{i=1}^{n} \frac{e_i^2}{\operatorname{Var}(\epsilon_i)}$$

where e_i is the residual for the *i*th observation.

(a) (4 marks) Show that the resulting estimate of β_1 is

$$b_1 = \frac{\sum_{i=1}^{n} Y_i}{\sum_{i=1}^{n} X_i}$$

$$Q = \sum \frac{(Y_i - b_1 X_i)^2}{\sigma^2 X_i}$$
$$\frac{\partial Q}{\partial b_1} = -2 \sum \frac{(Y_i - b_1 X_i) X_i}{\sigma^2 X_i}$$

Setting the derivative equal to zero gives:

$$b_1 = \frac{\sum Y_i}{\sum X_i}$$

(b) (5 marks) Find the distribution of b_1 assuming that the X_i 's are not random.

$$\begin{split} Y_i &\sim N(\beta_1 X_i, \ \sigma^2 X_i) \\ E(\sum Y_i) &= \sum E(Y_i) = \beta_1 \sum X_i \\ Var(\sum Y_i) &= \sum Var(Y_i) = \sigma^2 X_i \text{ using the fact that the } Y_i \text{'s are independent} \\ so \ E(b_1) &= \frac{\beta_1 \sum X_i}{\sum X_i} = \beta_1 \\ and \ Var(b_1) &= \frac{1}{(\sum X_i)^2} \sigma^2 \sum X_i = \frac{\sigma^2}{\sum X_i} \\ So \ b_1 &\sim N\left(\beta_1, \ \frac{\sigma^2}{\sum X_i}\right) \end{split}$$

- 6. Consider the multiple linear regression model given by $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $E(\boldsymbol{\epsilon}\boldsymbol{\epsilon}') = \sigma^2 \mathbf{I}$. The vector $\mathbf{b} = (b_0, b_1, \dots, b_k)'$ is the $(k+1) \times 1$ vector of least squares estimates and the vector \mathbf{e} is the $n \times 1$ vector of residuals. Assume that \mathbf{X} is not random.
 - (a) (2 marks) What is $E(\mathbf{e})$? Justify fully.

$$E(\mathbf{e}) = E((\mathbf{I} - \mathbf{H})\mathbf{Y})$$

= $(\mathbf{I} - \mathbf{H})E(\mathbf{Y})$
= $\mathbf{X}\boldsymbol{\beta} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$
= $\mathbf{0}$

(b) (6 marks) The covariance matrix of **b** and **e** is defined as the $(k + 1) \times n$ matrix given by

$$\mathbf{C} = E(\mathbf{b}\mathbf{e}') - E(\mathbf{b})E(\mathbf{e}').$$

Show that **C** is a $(k+1) \times n$ matrix in which all the entries are zero.

Since **b** has dimension $(k+1) \times 1$ and **e** has dimension $n \times 1$, **be'** has dimension $(k+1) \times n$.

$$C = E(\mathbf{b}\mathbf{e}') - \mathbf{0} \quad from \ (a)$$

= $E\left((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}\mathbf{Y}'(\mathbf{I} - \mathbf{H})\right)$
= $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E(\mathbf{Y}\mathbf{Y}') - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E(\mathbf{Y}\mathbf{Y}')\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$

Now

$$E(\mathbf{Y}\mathbf{Y}') = Cov(\mathbf{Y}) + E(\mathbf{Y}) E(\mathbf{Y}') = \sigma^2 \mathbf{I} + \mathbf{X} \boldsymbol{\beta} \boldsymbol{\beta}' \mathbf{X}'$$

So

$$\mathbf{C} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\sigma^{2}\mathbf{I} + \mathbf{X}\boldsymbol{\beta}\boldsymbol{\beta}'\mathbf{X}') - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\sigma^{2}\mathbf{I} + \mathbf{X}\boldsymbol{\beta}\boldsymbol{\beta}'\mathbf{X}')\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \\ = \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' + \boldsymbol{\beta}\boldsymbol{\beta}'\mathbf{X}' - \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta}\boldsymbol{\beta}'\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \\ = \mathbf{0}$$

7. An experiment was conducted to evaluate the effects of certain variables on soil erosion. Plots of sloped farm land were subjected to 5 cm of simulated rain for 20 minutes. The response is the amount of soil lost (variable: soillost) in kg/ha. The predictor variables of interest are: slope of the plot (variable: slope) in percent, percent ground cover (variable: cover), and porosity index (variable: porosity, low values are more porous).

Here are the data used in the analysis that follows:

soillost	slope	porosity	cover
27.1	0.43	1.95	0.34
35.6	0.47	5.13	0.32
31.4	0.44	3.98	0.29
37.8	0.48	6.25	0.30
40.2	0.48	7.12	0.25
39.8	0.49	6.50	0.26
55.5	0.53	10.67	0.10
43.6	0.50	7.08	0.16
52.1	0.55	9.88	0.19
43.8	0.51	8.70	0.18
35.7	0.48	4.96	0.28
	0.50	6.00	0.20

(a) (1 mark) The last observation is not used in the regression. What is the purpose of including it?

To get the predicted value of soillost for the given values of the predictor variables.

Here is some SAS output for the simple linear regression with **cover** as the independent variable.

Dependent Variable: soillost

			Analysis of	Variance				
			Sum	of	Mear	n		
Source		DF	Squar	es	Square	e FV	Value	Pr > F
Model		1	569.039	96 5	69.03996	6 4	40.15	0.0001
Error		9	127.545	49	14.17172	2		
Corrected Tot	al	10	696.585	45				
	Root MSE		3.764	53 R-S	quare	0.810	6 9	
	Dependent	Mean	40.236	36 Adj	R-Sq	0.796	66	
	Coeff Var		9.356	05				
			Parameter E	stimates				
		Pa	rameter	Standar	ď			
Variable	DF	E	stimate	Erro	r t	Value	Pr >	t
Intercep	t 1	6	4.57028	4.0044	2 3	16.12	<.0	001

15.82098

-6.34

0.0001

-100.25209

1

cover

(b) (3 marks) Give 90% simultaneous confidence intervals for the slope and intercept of the regression of soillost on cover.

Use the Bonferroni method: $t_{9,.1/2/2} = t_{9,.025} = 2.262$ CI for β_0 : 64.57 ± 2.262(4.004) = (55.5, 73.6) CI for β_1 : -100.25 ± 2.262(15.82) = (-136.0, -64.5)

Here is some SAS output for the simple linear regression with **porosity** as the independent variable.

Dependent Variable: soillost

Analysis of Variance									
			Su	m of		Mean			
Source		DF	Squ	ares	S	quare	F Va	alue	Pr > F
Model		1	668.1	4475	668.	14475	213	1.43	<.0001
Error		9	28.4	4070	3.	16008			
Corrected Total	-	10	696.5	8545					
Ro	ot MSE		1.7	7766	R-Squa:	re	0.9592	2	
De	ependent	Mean	40.2	3636	Adj R-	Sq	0.9546	3	
Co	oeff Var		4.4	1805					
			Parameter						
		Pa	rameter	Sta	andard				
Variable	DF	E	stimate		Error	t Va	lue	Pr >	t
Intercept	1	1	9.29777	1	.53651	12	.56	<.00	01
porosity	1		3.18921	0	.21933	14	.54	<.00	01

(c) (3 marks) For the 2 simple linear regressions, which variable (cover or porosity) do you think is a better predictor of soillost? Why? What else would you like to see to answer this question and why do you want to see it?

porosity is better. R^2 is higher so it explains more variability in soillost than cover.

Would also want to see scatterplots and residual plots to ensure that a linear model is appropriate and model assumptions are not violated.

Here is some SAS output from the multiple linear regression with independent variables slope, porosity, and cover.

The REG Procedure										
Dependent Variable: soillost										
	Analysis of Variance									
			Sum of	Me	an					
Source		DF	Squares	Squa	re F Valu	e Pr > F				
Model		3	680.68178	226.893	93 99.8	7 <.0001				
Error		7	15.90368	2.271	.95					
Corrected To	otal	10	696.58545							
	Root	MSE	1.50730	R-Square	0.9772					
	Depe	ndent Mean	40.23636	Adj R-Sq	0.9674					
	Coef	f Var	3.74611							
		Р	arameter Estin	mates						
		Parameter	Standard							
Variable	DF	Estimate	Error	t Value	Pr > t	Type I SS				
Intercept	1	-1.59534	18.04351	-0.09	0.9320	17809				
slope	1	76.45678	44.29509	1.73	0.1280	640.42489				
porosity	1	1.57585	0.73126	2.15	0.0681	33.04967				
cover	1	-23.77054	13.34612	-1.78	0.1181	7.20722				

(d) (3 marks) Using matrix form, state the multiple linear regression model that is being fit and the model assumptions.

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_{11} \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & X_{1,1} & X_{1,2} & X_{1,3} \\ \vdots & \vdots & \vdots \\ 1 & X_{11,1} & X_{11,2} & X_{11,3} \end{pmatrix}, \ \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}, \ \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_{11} \end{pmatrix}$$

Assumptions: $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$ (covers the 3 Gauss-Markov assumptions and normality)

(e) (2 marks) What are the hypotheses for the analysis of variance F-test and what do you conclude?

 $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ versus $H_a:$ at least one of $\beta_1, \beta_2, \beta_3$ is non-zero p < 0.0001 so conclude that the data give strong evidence that at least one of these coefficients is not zero.

(f) (4 marks) Calculate the coefficient of partial correlation for cover given slope and porosity are in the model. Explain how to interpret your result.

It is negative since the corresponding coefficient is negative and is

$$-\sqrt{\frac{7.20722}{15.90368 + 7.20722}} = -0.5584$$

This indicates how strongly cover is correlated with soillost after accounting for the effects of the other two predictors, and that the association is negative, i.e. higher values of cover are associated with smaller values of soillost when the other predictors held constant.

Here is some more of the SAS output for the multiple regression above.

soillost	soillost 1.00000	slope 0.95884 <.0001	porosity 0.97937 <.0001	cover -0.90382 0.0001
slope	0.95884 <.0001	1.00000	0.93660 <.0001	-0.82085 0.0011
porosity	0.97937 <.0001	0.93660 <.0001	1.00000	-0.85255 0.0004
cover	-0.90382 0.0001	-0.82085 0.0011	-0.85255 0.0004	1.00000

Pearson Correlation Coefficients Prob > |r| under H0: Rho=0

(g) (4 marks) Given this additional output is there any indication of multicollinearity? Is multicollinearity indicated in the output that proceeded the correlations (on page 9)? Why or why not?

Yes. All of the predictor variables are strongly correlated.

Yes. The p-value for the F-test is strongly significant but the p-values for the ttests for the individual coefficients given that the other variables are in the model show no or only weak evidence that each coefficient is not 0.

The following SAS output was also obtained for the multiple regression above.

The	REG Proce	dure
Dependent	Variable:	soillost

			Output	Statistics			
	Dependent	Predicted	Std Error				
Obs	Variable	Value	Mean Predict	95% CL	Mean	95% CL	Predict
1	27.1000	26.2720	1.0275	23.8422	28.7018	21.9584	30.5856
2	35.6000	34.8169	0.7501	33.0432	36.5905	30.8357	38.7980
3	31.4000	31.4241	0.9078	29.2775	33.5707	27.2634	35.5848
4	37.8000	37.8218	0.8249	35.8712	39.7724	33.7588	41.8848
5	40.2000	40.3813	0.8699	38.3243	42.4384	36.2661	44.4965
6	39.8000	39.9312	0.5173	38.7080	41.1543	36.1629	43.6994
7	55.5000	53.3640	1.1012	50.7600	55.9680	48.9499	57.7781
8	43.6000	43.9868	1.0964	41.3942	46.5793	39.5794	48.3941
9	52.1000	51.5089	1.1946	48.6842	54.3336	46.9611	56.0567
10	43.8000	46.8288	0.6498	45.2922	48.3654	42.9475	50.7101
11	35.7000	36.2644	0.8224	34.3196	38.2092	32.2041	40.3246
12	•	41.3340	1.3244	38.2024	44.4657	36.5895	46.0786

(h) (3 marks) The output on this page above includes 2 sets of intervals. Explain the difference between the 2 intervals for the first observation.

CL Mean gives a confidence interval for E(Y) for the values of the predictor variables for the first observation.

CL Predict gives a prediction interval for Y at these values.

The first interval is trying to capture the line at that point, the second is trying to capture an individual value of Y so it is wider as it includes the variability in each individual point.

(i) (3 marks) Suppose you are interested in putting a 95% interval for the mean value of soillost for the entire range of the data. How should the first 11 intervals for the mean from the output above be used?

They are constructed to capture the mean value of soillost 95% of the time individually so the chance that they all capture the mean of soillost at their respective values of the predictors is less than 95%. They should be adjusted by using the Working-Hotelling procedure.

- (j) (4 marks) Sketch typical residual plots that illustrate each of the following conditions. Clearly indicate what you are plotting.
 - i. The error variance increases with porosity index.

The answer should be a sketch of a plot of residuals versus porosity index where the residuals are scattered about zero, but the spread of the scatter is increasing.

ii. There is a non-linear relationship with ground cover.

The answer should be a sketch of a plot of residuals versus ground cover where the residuals are scattered in a curvilinear pattern. 8. The data considered in this question are oxygen uptake amounts for salamanders. Of interest is whether or not oxygen uptake can be explained by relative head width of the salamander. Measurements were taken on 10 salamanders; 4 of the salamanders were lungless, and 6 were lunged. Some output from SAS follows. lung_head is an interaction term.

The REG Procedure Dependent Variable: oxyup

Analysis of Variance						
			Sum of	Me	an	
Source		DF	Squares	Squa	re F Valu	1e Pr > F
Model		3	1677.00423	559.001	41 47.1	18 0.0001
Error		6	71.09577	11.849	29	
Corrected 1	otal	9	1748.10000			
	Root	MSE	3.44228	R-Square	0.9593	
	Deper	ndent Mean	69.30000	Adj R-Sq	0.9390	
	Coeff	Var	4.96722			
		Pa	arameter Estima	ates		
		Parameter	Standard			
Variable	DF	Estimate	Error	t Value	Pr > t	Type I SS
Intercept	1	76.66667	10.69130	7.17	0.0004	48025
head	1	33.33333	69.19244	0.48	0.6471	1056.13333

(a) (2 marks) Lung is a categorical variable. How does SAS proc reg deal with categorical variables when used as predictor variables? Give an example of how lung might be coded.

12.98215

79.81866

2.89

-4.08

0.0278

0.0065

423.23068

197.64021

lung

lung_head

1

1

37.49814

-325.98367

Categorical variables are coded with dummy (indicator) variables. For example, lung is 1 for lunged salamanders, and 0 for lungless salamanders.

(b) (3 marks) Do the data give evidence that relative head width affects oxygen up-take? Explain.

Yes. The p-value for the interaction term is 0.0065. There is a relationship that differs for lunged versus lungless salamanders.

(c) (4 marks) Carry out an hypothesis test to see if whether or not a salamander has lungs affects the relationship between oxygen uptake and relative head width.

Model: $Y = \beta_0 + \beta_1 \text{head} + \beta_2 \text{lung} + \beta_3 \text{lung} * \text{head} + \epsilon$ For lungless salamanders: $Y = \beta_0 + \beta_1 \text{head} + \epsilon$ For lunged salamanders: $Y = (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \text{head} + \epsilon$ The two-sided test with null hypothesis H_0 : $\beta_3 = 0$ has test statistic $t_{obs} = -4.08$ and p-value= 0.0065 so we have strong evidence that the slope is different for lungless and lunged salamanders, i.e. as headwidth changes by one unit, the mean change in oxygen uptake is different for the two types of salamanders. Alternatively, we could test H_0 : $\beta_2 = \beta_3 = 0$ versus H_a : at least 1 of β_2 , β_3 is not zero Test statistic: $F_{obs} = \frac{(423.23+197.64)/2}{11.849} = 26.2$

From the F-distribution with 2 and 6 degrees of freedom, 0.001So we have strong evidence that the relationship is different.

- 9. Short answers are required for each of the following questions.
 - (a) (4 marks) What is the effect of putting additional predictor variables in the model on each of the following?
 - i. \mathbb{R}^2

Increases

ii. SSE

Decreases

iii. the estimated standard deviation of the errors

Can increase or decrease depending on how much additional variability in the Y's is explained by the new variables.

(b) (3 marks) In polynomial regression, it is often recommended that quadratic and cubic terms be "centred" before being fit. What does this mean and why is this often done?

Instead of using X, X^2 , and X^3 use $(X - \overline{X})$, $(X - \overline{X})^2$, and $(X - \overline{X})^3$. X, X^2 , and X^3 are often highly correlated but $(X - \overline{X})$, $(X - \overline{X})^2$, and $(X - \overline{X})^3$ are less highly correlated resulting in more numerically stable calculations. (c) (3 marks) Explain the practical difference between saying two predictor variables are *independent* and saying that two variables are *interacting*. Can the variables be both?

Independence is a statement about how the predictor variables are related to each other.

Interaction has to do with their relationship with Y, that is whether the relationship between Y and a predictor varies with the value of the other predictor. Variables can be both.

(d) (3 marks) A job training program was made available. Because more people wanted to enroll in it than the number of spaces available, the job skills of the potential participants were evaluated and the people with fewer job skills were enrolled in the training program. The following model was used to test the effectiveness of the job training program: $\log(wage) = \beta_0 + \beta_1 I_{[training]} + \beta_2 \text{ education} + \beta_3 \text{ experience} + \epsilon$, where wage is the hourly rate of the job in which a person was employed 6 months after the training program ended, education is the number of years of education, experience is the number of years of job experience before the start of the training program, and $I_{[training]}$ is an indicator variable with the value 1 for people who enrolled in the training program and 0 for people who did not take the training. Explain how the estimate of β_1 should be interpreted.

For employees with the same education and experience, it is the estimate of the amount that the log of wage is higher on average for people in the training program. That is, the wages of program participants differ by the estimated multiplicative factor of e^{b_1} from people who did not participate, assuming everything else is the same.

This type of interpretation is confounded by the fact that people with fewer job skills were the ones that were enrolled in the program so we can't say that it is the program contributing to the change in wages.

Simple regression formulae

$$b_{1} = \frac{\sum(X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum(X_{i} - \overline{X})^{2}}$$
$$= \frac{\sum X_{i}Y_{i} - n\overline{X}\overline{Y}}{\sum(X_{i} - \overline{X})^{2}}$$
$$\operatorname{Var}(b_{1}) = \frac{\sigma^{2}}{\sum(X_{i} - \overline{X})^{2}}$$
$$\operatorname{Cov}(b_{0}, b_{1}) = -\frac{\sigma^{2}\overline{X}}{\sum(X_{i} - \overline{X})^{2}}$$
$$\operatorname{SSE} = \sum(Y_{i} - \hat{Y}_{i})^{2}$$
$$\sigma^{2}\{\hat{Y}_{h}\} = \operatorname{Var}(\hat{Y}_{h})$$
$$= \sigma^{2}\left(\frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{\sum(X_{i} - \overline{X})^{2}}\right)$$
$$\hat{X}_{i} = \frac{t_{n-2,1-\alpha/2}}{2} * \text{ appropriate solution}$$

$$\operatorname{Var}(b_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum (X_i - \overline{X})^2} \right)$$
$$\operatorname{SSTO} = \sum (Y_i - \overline{Y})^2$$

$$SSR = b_1^2 \sum (X_i - \overline{X})^2 = \sum (\hat{Y}_i - \overline{Y})^2$$

 $b_0 = \overline{Y} - b_1 \overline{X}$

$$\sigma^{2} \{ \text{pred} \} = \text{Var}(Y_{h} - \hat{Y}_{h})$$
$$= \sigma^{2} \left(1 + \frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{\sum (X_{i} - \overline{X})^{2}} \right)$$

Working-Hotelling coefficient: $W = \sqrt{2F_{2,n-2;1-\alpha}}$

$$\hat{X}_h \pm \frac{t_{n-2,1-\alpha/2}}{|b_1|} * \text{appropriate s.e.}$$
(valid approximation if $\frac{t^2 s^2}{b_1^2 \sum (X_i - \overline{X})^2}$ is small)
$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

Regression in matrix terms

$$\begin{aligned} \operatorname{Cov}(\mathbf{X}) &= \operatorname{E}[(\mathbf{X} - \operatorname{E}\mathbf{X})(\mathbf{X} - \operatorname{E}\mathbf{X})'] \\ &= \operatorname{E}(\mathbf{X}\mathbf{X}') - (\operatorname{E}\mathbf{X})(\operatorname{E}\mathbf{X})' \end{aligned} \qquad \qquad \operatorname{Cov}(\mathbf{A}\mathbf{X}) = \mathbf{A}\operatorname{Cov}(\mathbf{X})\mathbf{A}' \\ &\mathbf{b} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \qquad \qquad \operatorname{Cov}(\mathbf{b}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1} \\ &\hat{\mathbf{Y}} &= \mathbf{X}\mathbf{b} = \mathbf{H}\mathbf{Y} \qquad \qquad \mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}} = (\mathbf{I} - \mathbf{H})\mathbf{Y} \\ &\mathbf{H} &= \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \qquad \qquad \operatorname{SSR} = \mathbf{Y}'(\mathbf{H} - \frac{1}{n}\mathbf{J})\mathbf{Y} \\ &\operatorname{SSE} &= \mathbf{Y}'(\mathbf{I} - \mathbf{H})\mathbf{Y} \qquad \qquad \operatorname{SSTO} = \mathbf{Y}'(\mathbf{I} - \frac{1}{n}\mathbf{J})\mathbf{Y} \\ &\sigma^2\{\hat{Y}_h\} &= \operatorname{Var}(\hat{Y}_h) \qquad \qquad \sigma^2\{\operatorname{pred}\} = \operatorname{Var}(Y_h - \hat{Y}_h) \\ &= \sigma^2(\mathbf{1} + \mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h) \end{aligned}$$

$$R_{\rm adj}^2 = 1 - (n-1) \frac{MSE}{SSTO}$$