UNIVERSITY OF TORONTO

Faculty of Arts and Science
DECEMBER EXAMINATIONS 2006
STA 302 H1F / STA 1001 HF

Duration - 3 hours

Aids Allowed: Calculator

LAST NAME:

\qquad FIRST NAME: \qquad

STUDENT NUMBER:

\qquad

- There are 20 pages including this page.
- The last page is a table of formulae that may be useful. For all questions you can assume that the results on the formula page are known.
- Tables of the t distribution can be found on page 17 and tables of the F distribution can be found on pages 18 and 19.
- Total marks: 95

1,2	3	4	5	6	7 a	7 bc	7 de

7 fg	7 hi	7 j	8 ab	8 c	9 ab	9 cd

1. (5 marks) For each of the following models state whether its parameters can be estimated using standard linear regression techniques. If linear regression can be used, what are the independent and dependent variables that should be used if using proc reg in SAS?
(a) $Y_{i}=\beta_{0}+e^{\beta_{1} X_{i}}+\epsilon_{i}$
(b) $Y_{i}=\frac{1}{\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}}$
(c) $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\epsilon_{i}$ where β_{2} is known to be 5 .
2. (5 marks) A simple linear regression equation was fit to 10 observations. The following were calculated: $\sum_{i=1}^{10}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)=50, \quad \sum_{i=1}^{10}\left(Y_{i}-\bar{Y}\right)^{2}=100, \quad R_{a d j}^{2}=0.37$. Complete the analysis of variance table with the column headings: Source of variation, Degrees of freedom, Sum of squares, Mean square, F ratio, and p-value.
3. Let b_{0} and b_{1} be the estimated intercept and slope from the simple linear regression of Y on X using n observations. Let c_{1} and c_{2} be non-zero constants.
(a) (4 marks) Let b_{0}^{*} and b_{1}^{*} be the estimated intercept and slope from the simple linear regression of $c_{1} Y$ on $c_{2} X$. Express b_{0}^{*} and b_{1}^{*} in terms of b_{0}, b_{1}, c_{1}, and c_{2}.
(b) (4 marks) What is the effect of scaling X and Y to $c_{2} X$ and $c_{1} Y$ respectively on the test of $H_{0}: \beta_{1}=0$? Explain fully.
4. Consider the simple linear regression model $Y=\beta_{0}+\beta_{1} X+\epsilon$ with non-random X. Assume that the usual assumptions hold.
(a) (3 marks) Show that $b_{1}=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}}$ is an unbiased estimator of β_{1}.
(b) (5 marks) Show that $E(\mathrm{MSR})=\sigma^{2}+\beta_{1}^{2} S_{X X}$ where $S_{X X}=\sum\left(X_{i}-\bar{X}\right)^{2}$. Explain how this is related to the construction of the analysis of variance F-test.
5. Consider a model for regression through the origin $Y_{i}=\beta_{1} X_{i}+\epsilon_{i}$ in which the ϵ 's are independent and $\epsilon_{i} \sim N\left(0, \sigma^{2} X_{i}\right)$. A possible solution to the non-constant variance is to use "weighted" least squares. In weighted least squares, the estimate of β_{1} is obtained by minimizing

$$
Q=\sum_{i=1}^{n} \frac{e_{i}^{2}}{\operatorname{Var}\left(\epsilon_{i}\right)}
$$

where e_{i} is the residual for the i th observation.
(a) (4 marks) Show that the resulting estimate of β_{1} is

$$
b_{1}=\frac{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} X_{i}}
$$

(b) (5 marks) Find the distribution of b_{1} assuming that the X_{i} 's are not random.
6. Consider the multiple linear regression model given by $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ where $E(\boldsymbol{\epsilon})=\mathbf{0}$ and $E\left(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\prime}\right)=\sigma^{2} \mathbf{I}$. The vector $\mathbf{b}=\left(b_{0}, b_{1}, \ldots, b_{k}\right)^{\prime}$ is the $(k+1) \times 1$ vector of least squares estimates and the vector \mathbf{e} is the $n \times 1$ vector of residuals. Assume that \mathbf{X} is not random.
(a) (2 marks) What is $E(\mathbf{e})$? Justify fully.
(b) (6 marks) The covariance matrix of \mathbf{b} and \mathbf{e} is defined as the $(k+1) \times n$ matrix given by

$$
\mathbf{C}=E\left(\mathbf{b e}^{\prime}\right)-E(\mathbf{b}) E\left(\mathbf{e}^{\prime}\right) .
$$

Show that \mathbf{C} is a $(k+1) \times n$ matrix in which all the entries are zero.
7. An experiment was conducted to evaluate the effects of certain variables on soil erosion. Plots of sloped farm land were subjected to 5 cm of simulated rain for 20 minutes. The response is the amount of soil lost (variable: soillost) in $\mathrm{kg} / \mathrm{ha}$. The predictor variables of interest are: slope of the plot (variable: slope) in percent, percent ground cover (variable: cover), and porosity index (variable: porosity, low values are more porous).
Here are the data used in the analysis that follows:

soillost	slope	porosity	cover
27.1	0.43	1.95	0.34
35.6	0.47	5.13	0.32
31.4	0.44	3.98	0.29
37.8	0.48	6.25	0.30
40.2	0.48	7.12	0.25
39.8	0.49	6.50	0.26
55.5	0.53	10.67	0.10
43.6	0.50	7.08	0.16
52.1	0.55	9.88	0.19
43.8	0.51	8.70	0.18
35.7	0.48	4.96	0.28
.	0.50	6.00	0.20

(a) (1 mark) The last observation is not used in the regression. What is the purpose of including it?

Here is some SAS output for the simple linear regression with cover as the independent variable.

(Question 7 continued)
(b) (3 marks) Give 90% simultaneous confidence intervals for the slope and intercept of the regression of soillost on cover.

Here is some SAS output for the simple linear regression with porosity as the independent variable.

	Parameter Estimates				
	Parameter	Standard			
Variable	DF	Estimate	Error	t Value	Pr $>\|t\|$
Intercept	1	19.29777	1.53651	12.56	$<.0001$
porosity	1	3.18921	0.21933	14.54	$<.0001$

(c) (3 marks) For the 2 simple linear regressions, which variable (cover or porosity) do you think is a better predictor of soillost? Why? What else would you like to see to answer this question and why do you want to see it?
(Question 7 continued)
Here is some SAS output from the multiple linear regression with independent variables slope, porosity, and cover.

(d) (3 marks) Using matrix form, state the multiple linear regression model that is being fit and the model assumptions.
(e) (2 marks) What are the hypotheses for the analysis of variance F-test and what do you conclude?
(Question 7 continued)
(f) (4 marks) Calculate the coefficient of partial correlation for cover given slope and porosity are in the model. Explain how to interpret your result.

Here is some more of the SAS output for the multiple regression above.

(g) (4 marks) Given this additional output is there any indication of multicollinearity? Is multicollinearity indicated in the output that proceeded the correlations (on page 9)? Why or why not?
(Question 7 continued)
The following SAS output was also obtained for the multiple regression above.

(h) (3 marks) The output on this page above includes 2 sets of intervals. Explain the difference between the 2 intervals for the first observation.
(i) (3 marks) Suppose you are interested in putting a 95% interval for the mean value of soillost for the entire range of the data. How should the first 11 intervals for the mean from the output above be used?
(Question 7 continued)
(j) (4 marks) Sketch typical residual plots that illustrate each of the following conditions. Clearly indicate what you are plotting.
i. The error variance increases with porosity index.
ii. There is a non-linear relationship with ground cover.
8. The data considered in this question are oxygen uptake amounts for salamanders. Of interest is whether or not oxygen uptake can be explained by relative head width of the salamander. Measurements were taken on 10 salamanders; 4 of the salamanders were lungless, and 6 were lunged. Some output from SAS follows. lung head is an interaction term.

(a) (2 marks) Lung is a categorical variable. How does SAS proc reg deal with categorical variables when used as predictor variables? Give an example of how lung might be coded.
(b) (3 marks) Do the data give evidence that relative head width affects oxygen uptake? Explain.
(Question 8 continued)
(c) (4 marks) Carry out an hypothesis test to see if whether or not a salamander has lungs affects the relationship between oxygen uptake and relative head width.
9. Short answers are required for each of the following questions.
(a) (4 marks) What is the effect of putting additional predictor variables in the model on each of the following?
i. R^{2}
ii. SSE
iii. the estimated standard deviation of the errors
(b) (3 marks) In polynomial regression, it is often recommended that quadratic and cubic terms be "centred" before being fit. What does this mean and why is this often done?
(c) (3 marks) Explain the practical difference between saying two predictor variables are independent and saying that two variables are interacting. Can the variables be both?
(d) (3 marks) A job training program was made available. Because more people wanted to enroll in it than the number of spaces available, the job skills of the potential participants were evaluated and the people with fewer job skills were enrolled in the training program. The following model was used to test the effectiveness of the job training program: $\log ($ wage $)=\beta_{0}+\beta_{1} I_{\text {[training] }}+$ β_{2} education $+\beta_{3}$ experience $+\epsilon$, where wage is the hourly rate of the job in which a person was employed 6 months after the training program ended, education is the number of years of education, experience is the number of years of job experience before the start of the training program, and $I_{\text {[training] }}$ is an indicator variable with the value 1 for people who enrolled in the training program and 0 for people who did not take the training. Explain how the estimate of β_{1} should be interpreted.

Simple regression formulae

$$
\begin{aligned}
& \begin{array}{rlrl}
b_{1} & =\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{X}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\sum X_{i} Y_{i}-n \overline{X Y}}{\sum\left(X_{i}-\bar{X}\right)^{2}} & b_{0}=\bar{Y}-b_{1} \bar{X}
\end{array} \\
& \operatorname{Var}\left(b_{1}\right)=\frac{\sigma^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}} \\
& \operatorname{Cov}\left(b_{0}, b_{1}\right)=-\frac{\sigma^{2} \bar{X}}{\sum\left(X_{i}-\bar{X}\right)^{2}} \\
& \mathrm{SSE}=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2} \\
& \mathrm{SSR}=b_{1}^{2} \sum\left(X_{i}-\bar{X}\right)^{2}=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2} \\
& \sigma^{2}\left\{\hat{Y}_{h}\right\}=\operatorname{Var}\left(\hat{Y}_{h}\right) \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right) \\
& \hat{X}_{h} \pm \frac{t_{n-2,1-\alpha / 2}}{\left|b_{1}\right|} * \text { appropriate s.e. } \\
& \text { (valid approximation if } \frac{t^{2} s^{2}}{b_{1}^{2} \sum\left(X_{i}-\bar{X}\right)^{2}} \text { is small) } \\
& \sigma^{2}\{\text { pred }\}=\operatorname{Var}\left(Y_{h}-\hat{Y}_{h}\right) \\
& =\sigma^{2}\left(1+\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right) \\
& \text { Working-Hotelling coefficient: } \\
& W=\sqrt{2 F_{2, n-2 ; 1-\alpha}} \\
& r=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2} \sum\left(Y_{i}-\bar{Y}\right)^{2}}} \\
& \operatorname{Cov}(\mathbf{X})=\mathrm{E}\left[(\mathbf{X}-\mathbf{E X})(\mathbf{X}-\mathrm{E} \mathbf{X})^{\prime}\right] \quad \operatorname{Cov}(\mathbf{A X})=\mathbf{A} \operatorname{Cov}(\mathbf{X}) \mathbf{A}^{\prime} \\
& =\mathrm{E}\left(\mathbf{X} \mathbf{X}^{\prime}\right)-(\mathbf{E X})(\mathbf{E X})^{\prime} \\
& \mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \\
& \operatorname{Cov}(\mathbf{b})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& \hat{\mathbf{Y}}=\mathbf{X b}=\mathbf{H Y} \\
& \mathbf{e}=\mathbf{Y}-\hat{\mathbf{Y}}=(\mathbf{I}-\mathbf{H}) \mathbf{Y} \\
& \mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \quad \operatorname{SSR}=\mathbf{Y}^{\prime}\left(\mathbf{H}-\frac{1}{n} \mathbf{J}\right) \mathbf{Y} \\
& \operatorname{SSE}=\mathbf{Y}^{\prime}(\mathbf{I}-\mathbf{H}) \mathbf{Y} \\
& \mathrm{SSTO}=\mathbf{Y}^{\prime}\left(\mathbf{I}-\frac{1}{n} \mathbf{J}\right) \mathbf{Y} \\
& \sigma^{2}\left\{\hat{Y}_{h}\right\}=\operatorname{Var}\left(\hat{Y}_{h}\right) \\
& =\sigma^{2} \mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h} \\
& \begin{aligned}
\sigma^{2}\{\text { pred }\} & =\operatorname{Var}\left(Y_{h}-\hat{Y}_{h}\right) \\
& =\sigma^{2}\left(1+\mathbf{X}_{h}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{h}\right)
\end{aligned} \\
& R_{\mathrm{adj}}^{2}=1-(n-1) \frac{M S E}{S S T O}
\end{aligned}
$$

