UNIVERSITY OF TORONTO

Faculty of Arts and Science
JUNE EXAMINATION 2004
STA 302 H1F / STA 1001 H1F

Duration - 3 hours

Aids Allowed: Calculator

NAME: \qquad
\qquad

STUDENT NUMBER: \qquad

- There are 17 pages including this page.
- The last page is a table of formulae that may be useful.
- Tables of the t distribution can be found on page 15 and tables of the F distribution can be found on page 16 .
- Total marks: 75

1abcde	1 fg	2 ab	2 cd	3	4

5 a	5 b	5 cd	5 ef	6 ab	6 cde

1. Olympic gold medal performances in track and field improve over time. A regression was run with dependent variable longjump, the winning distance in the long jump (in inches), and independent variable year, the year the Olympics was held after 1900 (counting 1900 as year 0). Data from the Olympics held from 1900 through 1984 were used (some Olympics were missed during the World Wars). Here are the data:

year	0	4	8	12	20	24	28	32	36	48
longjump	282.9	289.0	294.5	299.3	281.5	293.1	304.8	300.8	317.3	308.0
year	52	56	60	64	68	72	76	80	84	
longjump	298.0	308.3	319.8	317.8	350.5	324.5	328.5	336.3	336.3	

Some output from SAS is given below.

Questions based on this output are on the next 2 pages.
(a) (2 marks) Estimate the mean change in the winning long jump distance from one Olympics to the next, assuming that the Olympics are held every 4 years.

$$
4(0.61308)=2.453
$$

(b) (1 mark) Estimate the variance in winning long jump distance that is not explained by the year the Olympics were held.

95.196

(c) (1 mark) Estimate the percent of total variability in winning long jump distance that is explained by the year the Olympics were held.
75.75%
(d) (1 mark) Estimate the correlation between winning long jump distance and the year the Olympics were held.

$$
\sqrt{.7575}=.8703
$$

(e) (2 marks) What is the observed value of the test statistic for the test $H_{0}: \beta_{1}=0$ versus $H_{a}: \beta_{1}>0$? What is the p-value for this test?
Test statistic: 7.29
p-value: < 0.00005
(f) (3 marks) Construct simultaneous 99% confidence intervals for the slope and intercept of the regression line.
Using the Bonferroni method, $t_{17,0.005 / 2}=3.222$
CI for slope: $.61308 \pm 3.222(.08413)=(.342, .884)$
CI for intercept: $283.454 \pm 3.222(4.2806)=(269.66,297.246)$
(g) (5 marks) It has been suggested that the Mexico City Olympics in 1968 saw unusually good track and field performances, possibly because of the high altitude. Construct an appropriate 95% interval for the predicted winning long jump distance in 1968. Do the data support these suggestions? Explain.
$\hat{Y}_{68}=283.454+.613(68)=325.14$
$t_{17, .025}=2.11$
Prediction interval: $325.14 \pm 2.11(9.757) \sqrt{1+\frac{1}{19}+\frac{(68-43.368)^{2}}{49184-19(43.368)^{2}}}=(303.57,346.71)$
The value in 1968 was 350.5 which is not in the prediction interval. So Mexico City was unusual.
2. (8 marks (2 marks each)) Each of the following plots is a scatterplot of a dependent variable versus an independent variable. We wish to study further the relationship between the two variables. Indicate an appropriate linear regression model based on the plot.
(a)

Point in bottom right corner is influential. Fit the model $Y_{i}=\beta_{0}+\beta_{i} X_{i}+\epsilon_{i}$ on X in the range from 7.5 to 14.
(b)

Fit model $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} d_{i}+\beta_{3} X_{i} * d_{i}+\epsilon_{i}$ where d_{i} is 1 if the i th point is in one of the groups of data and 0 otherwise.
(This question continues on the next page.)
(c)

This shows curvature plus increasing variance so use $Y^{\prime}=\log (Y)$ or \sqrt{Y} and fit $Y_{i}^{\prime}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$
(d)

Fit model $Y_{i}=\beta_{0}+\beta_{1} X_{i}^{\prime}+\beta_{2}\left(X_{i}^{\prime}\right)^{2}+\epsilon_{i}$ where X_{i}^{\prime} is centred X_{i}
3. (3 marks) Show, in the case of simple linear regression, that the fitted line passes through the point (\bar{X}, \bar{Y}).
Fitted line: $\hat{Y}=b_{0}+b_{1} X$ where $b_{0}=\bar{Y}-b_{1} \bar{X}$
So at $\bar{X}, \hat{Y}=\bar{Y}-b_{1} \bar{X}+b_{1} \bar{X}=\bar{Y}$
4. (a) (5 marks) A multiple linear regression model is be constructed to examine the relationship between a response variable Y and 3 predictor variables X_{1}, X_{2}, and X_{3}. Suppose measurements of these 4 variables have been taken on n items. State the multiple linear regression model in matrix terms, defining all of your matrices, including the standard assumptions.
Model: $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ where
$Y=\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right) \quad X=\left(\begin{array}{cccc}1 & X_{11} & X_{12} & X_{13} \\ 1 & X_{21} & X_{22} & X_{23} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n 1} & X_{n 2} & X_{n 3}\end{array}\right) \quad \beta=\left(\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3}\end{array}\right) \quad \epsilon=\left(\begin{array}{c}\epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n}\end{array}\right)$
Assumptions: $\boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$
(b) (3 marks) Derive the expression for the covariance matrix of the least squares estimators of the model coefficients of your model in part (a). (I.e., Show $\left.\operatorname{Cov}(\mathbf{b})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}.\right)$

$$
\begin{aligned}
\operatorname{Cov}(\mathbf{b}) & =\operatorname{Cov}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}\right) \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \operatorname{Cov}(\mathbf{Y}) \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \operatorname{Cov}(\boldsymbol{\epsilon}) \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma^{2} \mathbf{I}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

5. The data considered in the analysis below are observations on the acceleration (accel) of different vehicles along with their weight-to-horsepower ratio (whp), the speed at which they were travelling (speed), and the grade of the road (grade) which takes values 0,2 , and 6 (a value of 0 indicates the road was horizontal). There are 50 observations in the data set.
(a) (5 marks) The first model tried for these data was

$$
\text { accel }=\beta_{0}+\beta_{1} \text { whp }+\beta_{2} \text { speed }+\beta_{3} \text { grade }+\epsilon
$$

Some output from SAS is given below.

What does this output tell you about the ability of the vehicles to accelerate under various conditions? Your answer should explain the affects of each of whp, speed, and grade on acceleration.
For vehicles going the same speed on a road with the same grade, as whp goes up one unit, acceleration goes down 0.0184 units on average. There is strong evidence that the effect on acceleration over and above the other variables is nonzero.
For vehicles with the same whp on roads with the same grade, as speed goes up one unit, acceleration goes down 0.0935 units on average. There is strong evidence that the effect on acceleration over and above the other variables is non-zero.
For vehicles going the same speed on a road with the same whp, as the grade of the road goes up one unit, acceleration goes down 0.155 units on average. There is only weak evidence that this effect is different from zero.
(b) (3 marks) The next model fit was

$$
\operatorname{accel}=\beta_{0}+\beta_{1} \mathrm{whp}+\beta_{2} \text { speed }+\beta_{3} \text { grade } 0+\beta_{4} \text { grade } 2+\epsilon
$$

where grade $0=1$ if grade is 0 and is 0 otherwise, and grade $2=1$ if grade is 2 and is 0 otherwise. Some output from SAS for this model follows.

What is the purpose of using the two variables grade0 and grade2?
Can then model the effect of the three grades without making any assumptions about the functional form of the relationship of grade with acceleration.
Need 2 indicator variables since there are 3 levels of grade (so a grade of 6 is indicated when both are 0).
(c) (6 marks) Is the evidence for a grade effect stronger or weaker from the model in part (b) than the model in part (a)? Support your answer with appropriate statistical tests.
First model: p-value for test of no grade effect is 0.0922.
Second model:
Test $H_{0}: \beta_{3}=\beta_{4}=0$ versus H_{a} : at least one of β_{3}, β_{4} is not zero.
Test statistic: $F_{\text {obs }}=\frac{(3.48+2.92) / 2}{2.21}=1.45$
Under H_{0} this is an observation from an $F_{2,45}$ distribution. Approximating with $F_{2,30}$ gives $0.1<p<0.5$.
So the evidence of a grade effect is stronger for the first model.
(d) (2 marks) Note that R^{2} is almost identical for the models fit in parts (a) and (b). Choose another statistic that is useful for choosing between the two models and indicate which model is preferred.
Adjusted R^{2} : First model is .5995 , second model is .5906 so first model is preferred.
OR
MSE: First model is 2.16117, second model is 2.20896 so first model is preferred.
(e) (3 marks) Another model that could be fit is

$$
\text { accel }=\beta_{0}+\beta_{1} \text { whp }+\beta_{2} \text { speed }+\beta_{3} \text { grade }+\beta_{4} \text { whp_speed }+\epsilon
$$

where whp_speed $=$ whp $*$ speed. What additional information could be obtained from this model and how would you assess whether or not it is statistically important?
Can see whether the way whp affects acceleration varies with speed.
Test $H_{0}: \beta_{4}=0$ versus $H_{a}: \beta_{4} \neq 0$ given other variables in model using usual t-test.
(f) (5 marks) A plot of the residuals versus the predicted values and a normal quantile plot of the residuals for the regression in part (a) are on the next page. What additional information do these plots give?
First plot shows increasing variance so need transformation of Y (or weighted least squares).
Normal quantile plot shows tails that are a little lighter than normal so tests and confidence intervals based on normal theory are only approximately correct.

6. (a) (6 marks) A simple linear regression is carried out and one point is determined to be an outlier but not an influential point. It is removed from the data and the regression line is fit to the remaining data. Which of the following quantities will differ by a substantial amount between the two regressions? If there is a substantial difference, indicate in which regression it is larger. Indicate if you don't have enough information to say.
i. the slope
won't differ by a substantial amount since not influential
ii. the mean square error will decrease
iii. R^{2}
will increase
(b) (3 marks) Explain the difference between an outlier and an influential point. An outlier has a large (in absolute value) residual.
The point is far from the fitted line. An influential point is a point such that if it is removed and the line re-fit, the line will be different by a substantial amount. A point can be one or both of these.
(c) (2 marks) If you could choose the values of X at which to collect data before performing a simple linear regression analysis, would you prefer that $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ be large or small? Explain.
Large because gives smaller estimates of the variance of the regression parameter estimates.
(d) (2 marks) An investigator wishes to use multiple regression to predict a variable, Y, from two other variables, X_{1} and X_{2}. She is also interested in the quantity that is the sum of X_{1} and X_{2} and includes a third predictor variable in her model, $X_{3}=X_{1}+X_{2}$. What problems might she encounter?
$\mathbf{X}^{\prime} \mathbf{X}$ will be singular so can't calculate regression coefficients
(e) (4 marks) In a study of infant mortality, a regression model was constructed using birth weight (which is a good indicator of the baby's likelihood of survival) as a dependent variable and several independent variables, including the age of the mother, whether the mother smoked or took drugs during pregnancy, the amount of medical attention she had, her income, etc. The R^{2} was 11%, but the t-test provided by SAS for the coefficient of each predictor variable had p-value less than 0.01 . An obstetrician has asked you to explain the significance of the study as it relates to her practice. What would you say to her?
Since each variable has p-value <0.01, there is strong evidence that each helps explain birth weight over and above the other variables.
For 2 mothers with everything else in the model the same, the coefficient of a variable gives an indication how, on average, the birth weight will change when that variable changes (if positive, good, if negative, bad).
But, since R^{2} is low, there is still a lot of variability in the data that is not explained by the model and the birth weight for any given patient may not be well predicted.
Because this is not an experiment we can not say that any of these variables cause a change in birth weight, only that there is an indication of a relationship.

