UNIVERSITY OF TORONTO

Faculty of Arts and Science

JUNE EXAMINATION 2004

STA 302 H1F / STA 1001 H1F

Duration - 3 hours

Aids Allowed: Calculator

NAME:		
STUDENT NUMBER:		

- There are 17 pages including this page.
- The last page is a table of formulae that may be useful.
- ullet Tables of the t distribution can be found on page 15 and tables of the F distribution can be found on page 16.
- Total marks: 75

1abcde	1fg	2ab	2cd	3	4

5a	5b	5cd	5ef	6ab	6cde

1. Olympic gold medal performances in track and field improve over time. A regression was run with dependent variable longjump, the winning distance in the long jump (in inches), and independent variable year, the year the Olympics was held after 1900 (counting 1900 as year 0). Data from the Olympics held from 1900 through 1984 were used (some Olympics were missed during the World Wars). Here are the data:

year	0	4	8	12	20	24	28	32	36	48
longjump	282.9	289.0	294.5	299.3	281.5	293.1	304.8	300.8	317.3	308.0
year	52	56	60	64	68	72	76	80	84	
longiump	298.0	308.3	319.8	317.8	350.5	324.5	328.5	336.3	336.3	

Some output from SAS is given below.

The REG Procedure Descriptive Statistics

			Uncorrected		Standard
Variable	Sum	Mean	SS	Variance	Deviation
Intercept	19.00000	1.00000	19.00000	0	0
year	824.00000	43.36842	49184	747.13450	27.33376
longjump	5890.81250	310.04276	1833077	370.73440	19.25446

The REG Procedure Model: MODEL1 Dependent Variable: longjump

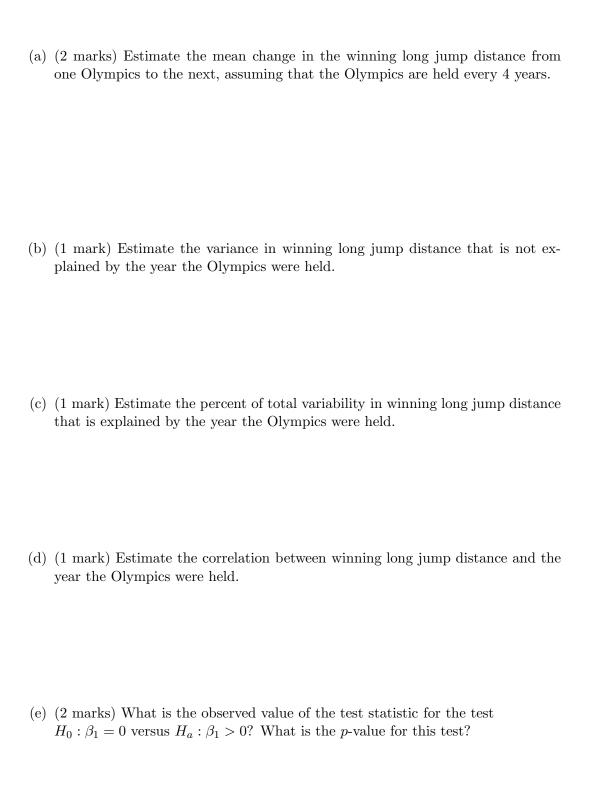
Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	5054.88650	5054.88650	53.10	<.0001
Error	17	1618.33267	95.19604		
Corrected Total	18	6673.21916			
Root MS	SE	9.75685	R-Square	0.7575	
Depende	ent Mean	310.04276	Adj R-Sq	0.7432	
Coeff V	<i>l</i> ar	3.14694	_		

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	283.45427	4.28064	66.22	<.0001
year	1	0.61308	0.08413	7.29	<.0001

Questions based on this output are on the next 2 pages.

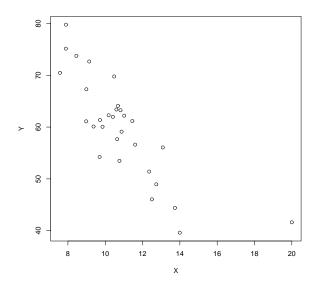


(f) (3 marks) Construct simultaneous 99% confidence intervals for the slope and intercept of the regression line.

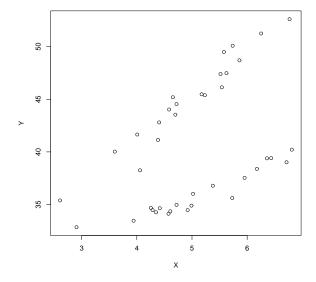
(g) (5 marks) It has been suggested that the Mexico City Olympics in 1968 saw unusually good track and field performances, possibly because of the high altitude. Construct an appropriate 95% interval for the predicted winning long jump distance in 1968. Do the data support these suggestions? Explain.

2. (8 marks (2 marks each)) Each of the following plots is a scatterplot of a dependent variable versus an independent variable. We wish to study further the relationship between the two variables. Indicate an appropriate linear regression model based on the plot.

(a)

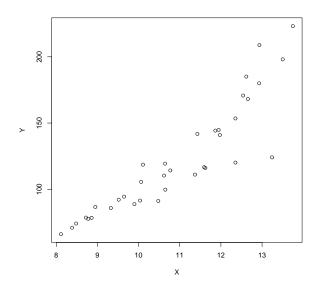


(b)

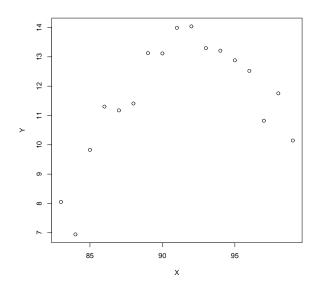


(This question continues on the next page.)

(c)



(d)



3. (3 marks) Show, in the case of simple linear regression, that the fitted line passes through the point $(\overline{X}, \overline{Y})$.

4. (a) (5 marks) A multiple linear regression model is be constructed to examine the relationship between a response variable Y and 3 predictor variables X_1 , X_2 , and X_3 . Suppose measurements of these 4 variables have been taken on n items. State the multiple linear regression model in matrix terms, defining all of your matrices, including the standard assumptions.

(b) (3 marks) Derive the expression for the covariance matrix of the least squares estimators of the model coefficients of your model in part (a). (I.e., Show $\text{Cov}(\mathbf{b}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}$.)

- 5. The data considered in the analysis below are observations on the acceleration (accel) of different vehicles along with their weight-to-horsepower ratio (whp), the speed at which they were travelling (speed), and the grade of the road (grade) which takes values 0, 2, and 6 (a value of 0 indicates the road was horizontal). There are 50 observations in the data set.
 - (a) (5 marks) The first model tried for these data was

$$accel = \beta_0 + \beta_1 whp + \beta_2 speed + \beta_3 grade + \epsilon$$

Some output from SAS is given below.

The REG Procedure

Model: MODEL1

Dependent Variable: accel

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	164.99430	54.99810	25.45	<.0001
Error	46	99.41390	2.16117		
Corrected Total	49	264.40820			
Root M	ISE	1.47009	R-Square	0.6240	
Depend	lent Mean	2.60600	Adj R-Sq	0.5995	
Coeff	Var	56.41183			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	7.19950	0.60087	11.98	<.0001
whp	1	-0.01838	0.00269	-6.83	<.0001
speed	1	-0.09347	0.01307	-7.15	<.0001
grade	1	-0.15548	0.09040	-1.72	0.0922

What does this output tell you about the ability of the vehicles to accelerate under various conditions? Your answer should explain the affects of each of whp, speed, and grade on acceleration.

(b) (3 marks) The next model fit was

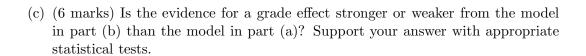
$$\mathtt{accel} = \beta_0 + \beta_1 \mathtt{whp} + \beta_2 \mathtt{speed} + \beta_3 \mathtt{grade0} + \beta_4 \mathtt{grade2} + \epsilon$$

where $\mathtt{grade0} = 1$ if \mathtt{grade} is 0 and is 0 otherwise, and $\mathtt{grade2} = 1$ if \mathtt{grade} is 2 and is 0 otherwise. Some output from SAS for this model follows.

The REG Procedure Dependent Variable: accel

		P	analysis of Va	riance		
			Sum of	Me	ean	
Source		DF	Squares	Squa	are F Va	lue Pr > F
Model		4	165.00484	41.25	121 18	3.67 <.0001
Error		45	99.40336	2.208	896	
Corrected 1	Γotal	49	264.40820			
	Roc	ot MSE	1.48626	R-Square	0.6241	
	Dep	endent Mean	2.60600	Adj R-Sq		}
	Coe	eff Var	57.03217			
			Parameter Est	imates		
		Parameter	Standard			
Variable	DF	Estimate	Error	t Value	Pr > t	Type I SS
Intercept	1	6.25693	0.61730	10.14	<.0001	339.56180
whp	1	-0.01839	0.00272	-6.76	<.0001	52.93850
speed	1	-0.09345	0.01322	-7.07	<.0001	105.66329
grade0	1	0.93165	0.54864	1.70	0.0964	3.48062
grade2	1	0.65181	0.56668	1.15	0.2561	2.92243

What is the purpose of using the two variables grade0 and grade2?



(d) (2 marks) Note that R^2 is almost identical for the models fit in parts (a) and (b). Choose another statistic that is useful for choosing between the two models and indicate which model is preferred.

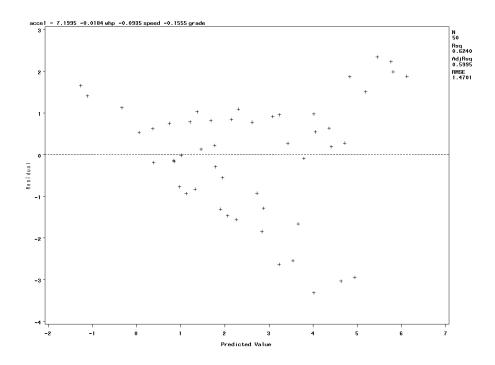
Tontinued Continued

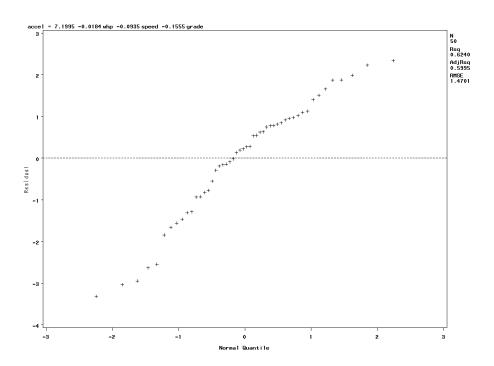
(e) (3 marks) Another model that could be fit is

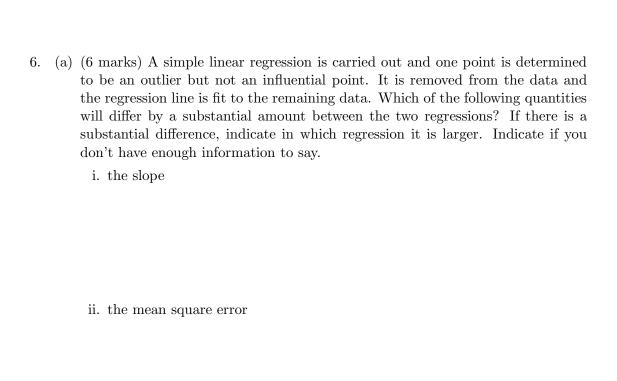
$$\texttt{accel} = \beta_0 + \beta_1 \texttt{whp} + \beta_2 \texttt{speed} + \beta_3 \texttt{grade} + \beta_4 \texttt{whp_speed} + \epsilon$$

where whp_speed = whp*speed. What additional information could be obtained from this model and how would you assess whether or not it is statistically important?

(f) (5 marks) A plot of the residuals versus the predicted values and a normal probability plot of the residuals for the regression in part (a) are on the next page. What additional information do these plots give?







iii. R^2

(b) (3 marks) Explain the difference between an outlier and an influential point.

(c) (2 marks) If you could choose the values of X at which to collect data before performing a simple linear regression analysis, would you prefer that $\sum_{i=1}^{n} (X_i - \overline{X})^2$ be large or small? Explain.

(d) (2 marks) An investigator wishes to use multiple regression to predict a variable, Y, from two other variables, X_1 and X_2 . She is also interested in the quantity that is the sum of X_1 and X_2 and includes a third predictor variable in her model, $X_3 = X_1 + X_2$. What problems might she encounter?

(e) (4 marks) In a study of infant mortality, a regression model was constructed using birth weight (which is a good indicator of the baby's likelihood of survival) as a dependent variable and several independent variables, including the age of the mother, whether the mother smoked or took drugs during pregnancy, the amount of medical attention she had, her income, etc. The R^2 was 11%, but the t-test provided by SAS for the coefficient of each predictor variable had p-value less than 0.01. An obstetrician has asked you to explain the significance of the study as it relates to her practice. What would you say to her?

Tontinued Continued

Simple regression formulae

$$b_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2} \qquad b_0 = \overline{Y} - b_1 \overline{X}$$

$$\operatorname{Var}(b_1) = \frac{\sigma^2}{\sum (X_i - \overline{X})^2} \qquad \operatorname{Var}(b_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum (X_i - \overline{X})^2}\right)$$

$$\operatorname{Cov}(b_0, b_1) = -\frac{\sigma^2 \overline{X}}{\sum (X_i - \overline{X})^2} \qquad \operatorname{SSTO} = \sum (Y_i - \overline{Y})^2$$

$$\operatorname{SSE} = \sum (Y_i - \hat{Y}_i)^2 \qquad \operatorname{SSR} = b_1^2 \sum (X_i - \overline{X})^2 = \sum (\hat{Y}_i - \overline{Y})^2$$

$$\sigma^2 \{\hat{Y}_h\} = \operatorname{Var}(\hat{Y}_h) \qquad \sigma^2 \{\operatorname{pred}\} = \operatorname{Var}(Y_h - \hat{Y}_h) \qquad = \sigma^2 \left(\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum (X_i - \overline{X})^2}\right)$$

$$\hat{X}_h \pm \frac{t_{n-2,1-\alpha/2}}{|b_1|} * \operatorname{appropriate s.e.} \qquad \operatorname{Working-Hotelling coefficient:}$$

$$(\operatorname{valid approximation if } \frac{t^2 s^2}{b_1^2 \sum (X_i - \overline{X})^2} \text{ is small}) \qquad W = \sqrt{2F_{2,n-2;1-\alpha}}$$

Regression in matrix terms

$$\begin{aligned} \operatorname{Cov}(\mathbf{X}) &= \operatorname{E}[(\mathbf{X} - \operatorname{E}\mathbf{X})(\mathbf{X} - \operatorname{E}\mathbf{X})'] \\ &= \operatorname{E}(\mathbf{X}\mathbf{X}') - (\operatorname{E}\mathbf{X})(\operatorname{E}\mathbf{X})' \end{aligned} \qquad \operatorname{Cov}(\mathbf{A}\mathbf{X}) = \mathbf{A}\operatorname{Cov}(\mathbf{X})\mathbf{A}' \\ \mathbf{b} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \qquad \operatorname{Cov}(\mathbf{b}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1} \end{aligned}$$
$$\hat{\mathbf{Y}} &= \mathbf{X}\mathbf{b} = \mathbf{H}\mathbf{Y} \qquad \mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}} = (\mathbf{I} - \mathbf{H})\mathbf{Y}$$
$$\mathbf{H} &= \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \qquad \operatorname{SSR} = \mathbf{Y}'(\mathbf{H} - \frac{1}{n}\mathbf{J})\mathbf{Y}$$
$$\operatorname{SSE} &= \mathbf{Y}'(\mathbf{I} - \mathbf{H})\mathbf{Y} \qquad \operatorname{SSTO} &= \mathbf{Y}'(\mathbf{I} - \frac{1}{n}\mathbf{J})\mathbf{Y} \end{aligned}$$
$$\sigma^2\{\hat{Y}_h\} = \operatorname{Var}(\hat{Y}_h) \qquad \sigma^2\{\operatorname{pred}\} = \operatorname{Var}(Y_h - \hat{Y}_h) \\ &= \sigma^2(\mathbf{1} + \mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h) \end{aligned}$$

$$R_{\text{adj}}^2 = 1 - (n-1) \frac{MSE}{SSTO}$$